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ABSTRACT

Wu, Meng-Lin Ph.D., Purdue University, August 2019. Occlusion Management in
Conventional and Head-Mounted Display Visualization through the Relaxation of
the Single Viewpoint/Timepoint Constraint. Major Professor: Voicu Popescu.

In conventional computer graphics and visualization, images are synthesized fol-

lowing the planar pinhole camera (PPC) model. The PPC approximates physical

imaging devices such as cameras and the human eye, which sample the scene with

linear rays that originate from a single viewpoint, i.e. the pinhole. In addition, the

PPC takes a snapshot of the scene, sampling it at a single instant in time, or time-

point, for each image. Images synthesized with these single viewpoint and single

timepoint constraints are familiar to the user, as they emulate images captured with

cameras or perceived by the human visual system. However, visualization using the

PPC model suffers from the limitation of occlusion, when a region of interest (ROI) is

not visible due to obstruction by other data. The conventional solution to the occlu-

sion problem is to rely on the user to change the view interactively to gain line of sight

to the scene ROIs. This approach of sequential navigation has the shortcomings of (1)

inefficiency, as navigation is wasted when circumventing an occluder does not reveal

an ROI, (2) inefficacy, as a moving or a transient ROI can hide or disappear before

the user reaches it, or as scene understanding requires visualizing multiple distant

ROIs in parallel, and (3) user confusion, as back-and-forth navigation for systematic

scene exploration can hinder spatio-temporal awareness.

In this thesis we propose a novel paradigm for handling occlusions in visualiza-

tion based on generalizing an image to incorporate samples from multiple viewpoints

and multiple timepoints. The image generalization is implemented at camera model

level, by removing the same timepoint restriction, and by removing the linear ray
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restriction, allowing for curved rays that are routed around occluders to reach dis-

tant ROIs. The paradigm offers the opportunity to greatly increase the information

bandwidth of images, which we have explored in the context of both desktop and

head-mounted display visualization, as needed in virtual and augmented reality ap-

plications. The challenges of multi-viewpoint multi-timepoint visualization are (1)

routing the non-linear rays to find all ROIs or to reach all known ROIs, (2) making

the generalized image easy to parse by enforcing spatial and temporal continuity and

non-redundancy, (3) rendering the generalized images quickly as required by interac-

tive applications, and (4) developing algorithms and user interfaces for the intuitive

navigation of the compound cameras with tens of degrees of freedom. We have ad-

dressed these challenges (1) by developing a multiperspective visualization framework

based on a hierarchical camera model with PPC and non-PPC leafs, (2) by routing

multiple inflection point rays with direction coherence, which enforces visualization

continuity, and without intersection, which enforces non-redundancy, (3) by design-

ing our hierarchical camera model to provide closed-form projection, which enables

porting generalized image rendering to the traditional and highly-efficient projection

followed by rasterization pipeline implemented by graphics hardware, and (4) by de-

vising naturalistic user interfaces based on tracked head-mounted displays that allow

deploying and retracting the additional perspectives intuitively and without simulator

sickness.
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1. INTRODUCTION

In computer graphics and visualization, images are synthesized by sampling the vir-

tual scene with rays that originate from the virtual camera’s viewpoint. This virtual

camera is modeled after the physical planar pinhole camera (PPC). Specifically, the

PPC model assumes that i) sampling is done with rays that resemble light rays, i.e.

they are straight lines, ii) all sampling rays converge to a single point, and iii) the

rays are defined by a uniform grid of pixels. The PPC model mimics the human eye,

and therefore it produces images that are familiar to the user.

The PPC model is well-suited for graphics and visualization, as it generates images

that show a virtual scene the same way a photograph or video sequence shows a real

world scene. In virtual reality (VR) head-mounted display (HMD) visualization, the

familiar visualization using PPC enables the user to feel immersed into the virtual

world, and it provides spatial awareness to the user. In augmented reality (AR)

HMD visualization, the PPC model is necessary for the virtual annotations to remain

perfectly aligned with the real world. Real world scenes are conveniently acquired

with video cameras that implement the PPC model, and the resulting image-based

datasets support a photorealistic visualization of the scene through simple query and

interpolation operations.

However, a region of interest (ROI) can become occluded from the single viewpoint

at the current point in time. In image synthesis, occlusions can prevent an ROI from

being visible in an image; in real scene acquisition, occluded scene segments are

missing from the resulting acquired data set, creating visualization artifacts when the

user view exposes them. Occlusion is a fundamental limitation of the PPC camera

model, and it cannot be removed no matter how much triangle rendering performance

increases, and no matter the sophistication of shading algorithms. Occlusion burdens

the user in desktop visualization, as they must manually navigate the virtual scene to
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establish line of sight to occluded ROIs. Occlusion is an even more pressing limitation

in head-mounted display visualization, where the user must laboriously navigate the

scene through physical locomotion.

We propose to reduce the ill effects of occlusion by rethinking the imaging process

in graphics and visualization—gainfully deviating from the PPC rendering model.

This thesis investigates methods to increase the information bandwidth of images

by showing not only what is visible from the current user viewpoint at the current

point in time, but also what is visible from additional viewpoints and at additional

timepoints. A conventional image is expanded with additional samples while avoid-

ing redundancy and discontinuities. This image generalization is achieved through

innovative relaxation of the constraints imposed by the PPC model. The resulting

camera model gathers samples across multiple view and time points, infers missing

or costly to compute samples, and integrates all samples in an effective visualization.

At its core, this thesis advocates a departure from conventional rendering algorithms

which aim to reproduce human vision using the PPC model. The thesis advocates

expanding image synthesis by exploring the space of camera models that underlie

the mapping of the 3D scene to the 2D image. The image synthesis freedom gained

through camera model design can lead to powerful and intuitive visualizations of

complex datasets. The benefits of image generalization are explored not only in the

context of conventional, non-immersive desktop displays, but also in the context of

HMDs that provide immersive visualization in VR and AR.

1.1 Motivation

Occlusions are a severe bottleneck for the visualization of large and complex

datasets. Conventional images only show dataset elements to which there is a direct

line of sight, which significantly limits the information bandwidth of the visualiza-

tion. Multiperspective visualization (MPV) is a powerful approach for alleviating

occlusions to show more than what is visible from a single viewpoint. However,
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constructing multiperspective camera models and rendering multiperspective images

remains challenging [1].

Immersive navigation in VR and AR mirrors physical locomotion through pose

tracking of the HMD. While this navigation modality is intuitive, ROIs in the scene

may suffer from occlusion and require significant viewpoint translation. Moreover,

limited physical space and user mobility need to be taken into consideration. Some

ROIs may require viewpoints that are physically unreachable without less intuitive

methods such as walking in-place or redirected walking [2].

Navigation in VR is free from the requirement that virtual and real worlds be

perfectly aligned. Therefore, a prevalent navigation technique is teleportation, where

the user’s virtual position is quickly or instantly translated to the desired destination,

while the user is physically stationary. Using teleportation, the user is able to reach

previously inaccessible destinations. However, employing teleportation requires the

user to first acquire a line of sight to the destination, which can be challenging in

complex scenes. Furthermore, the transition of teleportation incurs a loss of spatial

awareness by disrupting visualization, and it risks motion sickness by causing the

user’s physical and virtual positions to diverge [3].

In video acquisition of a real-world object of interest, or target, the acquired video

stream can also suffer from occlusion. The target is partially or completely occluded

when it moves behind an occluder, or when an occluder moves in front of it. The video

inpainting approach removes occlusions from a video stream by cutting out occluders

and reconstructing the missing region with samples gathered from other spatiotempo-

ral regions of the video stream. Prior video inpainting methods attempt to optimize

the reconstruction according to image quality metrics, but the optimization is in

general too computationally expensive for real-time performance. Surveillance and

diminished reality applications cannot leverage prior video inpainting methods due

to the insufficient performance [4].
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1.2 Overview

In Chapter 2, we present a framework for designing multiperspective focus+context

visualizations with great flexibility by manipulating the underlying camera model.

The focus region viewpoint is adapted to alleviate occlusions. The framework sup-

ports MPV in three scenarios. In a first scenario, the viewpoint is altered inde-

pendently for individual image regions to avoid occlusions. In a second scenario,

conventional input images are connected into a multiperspective image. In a third

scenario, one or several data subsets of interest (i.e., targets) are visualized where

they would be seen in the absence of occluders, as the user navigates or the targets

move. The multiperspective images are rendered at interactive rates, leveraging the

camera models fast projection operation. We demonstrate the framework on ter-

rain, urban, and molecular biology geometric datasets, as well as on volume rendered

density datasets (Fig. 1.1).

In Chapter 3, we propose a novel approach for increasing navigation efficiency

in VR and AR using MPV. Our approach samples occluded ROIs from additional

perspectives, which are integrated seamlessly into the user’s perspective. This ap-

proach improves navigation efficiency by bringing simultaneously into view multiple

ROIs, allowing the user to explore more while moving less. We have conducted a

user study that shows that our method brings significant performance improvement

in VR and AR environments, on tasks that include tracking, matching, searching,

and ambushing objects of interest (Fig. 1.2).

In Chapter 4, we present a novel MPV approach designed to improve navigation

efficiency in Virtual Reality applications. The MPV is continuous and non-redundant,

it shows the near part of the scene with a conventional, first-person visualization in

order to anchor the user, and it is controlled with user head translations and rotations

reminiscent of natural navigation. Three types of anchored MPV are introduced, one

that provides a lateral disocclusion effect, allowing the user to see around occluders

and through side portals (Fig. 1.3, (a)), one that provides a vertical disocclusion
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(a) In the PPC image (left), the terrain is seen from a single viewpoint. In the MPV image (right),
a sub-frustum freely navigates to focus on the lake.

(b) The ground-level target hidden in the PPC image (left) is revealed in the MPV image (right).

(c) The yellow atom hidden in the PPC image (left) is visible in the MPV image (right).

(d) The left cylinder is viewed from a more favorable viewpoint in the MPV image (right) than
the PPC image (left).

Fig. 1.1.: MPV framework demonstrated on various datasets: a) terrain, b) urban,
c) molecular biology, and d) volumetric.
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(a) Tracking

(b) Matching

(c) Searching

(d) Ambushing

Fig. 1.2.: Multiperspective (right) versus conventional (left) visualization in VR
(top half) and AR (bottom half) applications. a) The user tracks a red target that
moves on the ground in a VR urban scene. b) The user matches target pairs of the

same color pattern in a VR urban scene. c) The user finds a hidden red colored
target in an AR scene. d) The user ambushes a pink colored target around the

corner in an AR scene.
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(a) Lateral MPV disocclusion deployed by lateral head translation.

(b) Vertical MPV disocclusion deployed by vertical head translation.

Fig. 1.3.: Naturalistic interface for MPV in VR.

effect, allowing the user to see over and on top of occluders (Fig. 1.3, (b)), and

one that provides teleportation, allowing the user to relocate (Fig. 1.4). The VR

navigation efficiency benefits of the anchored MPV have been analyzed in a user study.

Significant improvements were achieved in the metrics of number of teleportations and

total distance traveled. In these metrics, large or greater Cohen’s d effect sizes were

observed at p-values below 0.05 in a first VR scene, while medium effect sizes at

p-values of 0.1 or better were observed in a second VR scene.

In Chapter 5, we present a novel method for fast video occlusion removal to

visualize a deformable target. The input to our pipeline is a single RGBD stream

acquired from a stationary color+depth camera. Our pipeline segments the current

frame to find the target and the occluders, searches for the best matching disoccluded

view of the target in an earlier frame, computes a mapping between the target in the

current frame and the target in the best matching frame, inpaints the missing pixels of
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.4.: Anchored teleportation using MPV. a) The user selects the destination. b)
to d) The secondary perspective translates smoothly to the destination, while the

primary perspective anchors the user. e) and f) The primary perspective translates
to the destination, while the secondary perspective anchors the user.
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(a) (b) (c)

Fig. 1.5.: Occlusion in real-world scene visualization (a) removed through
multi-timepoint sampling (b), which integrates samples from an earlier frame (c).

the target in the current frame using the mapping to the earlier frame, and visualizes

the disoccluded target in the current frame. We demonstrate our method in the case

of a walking human occluded by stationary or walking humans (Fig. 1.5). Our method

does not rely on a known model of the target or of the occluders, and therefore it

generalizes to other shapes. Our method runs at 30fps.

1.3 Thesis Statement

Occlusions in desktop and head-mounted display visualization of 3D datasets can

be alleviated by relaxing the single viewpoint and single timepoint constraints of con-

ventional images, to increase the information content of the image by integrating

dataset samples collected from multiple viewpoints and multiple timepoints.
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2. MULTIPERSPECTIVE FOCUS+CONTEXT

VISUALIZATION

2.1 Introduction

Most images used in computer graphics and visualization are computed with the

conventional PPC model, which approximates the human eye. Whereas this is essen-

tial in applications such as virtual reality where the goal is to make users believe that

they are immersed in the scene rendered, researchers in visualization have recognized

that the limitations of conventional images are not always warranted. This research

path was inspired by artists who have long looked beyond the conventional PPC to

achieve compositions that exaggerate scale or avoid occlusions.

One limitation of conventional images is a reduced field of view, which has been

addressed with panoramic camera models such as fisheyes. A second limitation is that

conventional images sample the dataset uniformly, oblivious to importance variations

within the dataset. Conventional focus+context techniques address this limitation

by allocating more image pixels to data subsets of higher importance.

A third limitation is that a conventional image samples a dataset from a single

viewpoint and occlusions limit the visualization capability of the image. One approach

for overcoming occlusions is to rely on the user to change the viewpoint interactively in

order to circumvent occluders and to establish a direct line of sight to each data subset

of potential interest. One disadvantage of such a sequential exploration is inefficiency:

data subsets are explored one at a time, and the navigation path has to be retraced to

achieve a systematic exploration of the entire dataset. A second disadvantage is that

the user never sees more than a single data subset at a time and connections between

subsets that are far apart in the visualization sequence can be missed. The problem is

exacerbated in the case of time-varying datasets, where the eloquence of a connection
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between distant data subsets could be transient. The problem can be alleviated

by visualizing the dataset in parallel with multiple conventional images. The user

sees several data subsets simultaneously, but the visualization is discontinuous at the

borders of the individual images and the user has to examine one image at the time

which reduces the benefits of the parallel visualization.

Another approach for overcoming occlusions is multiperspective visualization,

which integrates dataset samples captured from multiple viewpoints into a single,

continuous ”multiperspective” image. The multiperspective image enables parallel

visualization without the high cognitive load of the multitude of disparate contexts

presented by individual conventional images [5].

Multiperspective visualization can be seen as a generalization of focus+context

visualization. Multiple focus regions are visualized simultaneously connected by con-

tinuous context, but without the restriction that all focus regions are visualized from

the same viewpoint. The challenge is to construct a multiperspective visualization

that provides good control over the multiple viewpoints from where the dataset is

sampled, while maintaining image continuity, as needed for visualization efficacy, and

while maintaining rendering efficiency, as needed to support interactive visualization

and time-varying datasets.

In this chapter we present a flexible framework for interactive multiperspective

focus+context visualization. The multiperspective image is constructed by rendering

the dataset with a camera with piecewise linear rays. Some of the rays are designed to

circumvent occluders and to reach the data subsets of interest, while the remaining

rays are designed to connect the data subsets of interest with continuous context.

The multiperspective camera is assembled from a small number of camera segments,

i.e., simple cameras with linear rays, which enables good control over the viewpoints

integrated in the visualization. Moreover, the segments provide fast projection which

allows rendering the multiperspective image efficiently, on the GPU, by projection

followed by rasterization. We also refer the reader to the accompanying video.
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Fig. 2.1.: Conventional visualization of terrain dataset (top) and multiperspective
visualization constructed with our framework in top-down fashion (bottom). The
viewpoint was modified for two regions individually to reveal a lake (left) and a

valley (right).

The framework enables multiperspective visualization according to three scenarios.

Consider a first scenario where the user visualizes a dataset with a high-resolution,

large field of view conventional image. The user can select image regions of interest

and modify the viewpoint for each individual region interactively to alleviate occlu-

sions. The overall view does not change and it provides continuous context to connect

the multiple focus regions (Fig. 2.1). This scenario is supported with a top-down mul-

tiperspective camera constructor that modifies the ray bundle of each focus region.

Top-down construction supports multiple disjoint focus regions (Fig. 2.4).

Consider a second scenario where a user explores a dataset through conventional

interactive visualization; views of interest are saved as they are encountered, and

then they are integrated seamlessly into a multiperspective visualization (Fig. 2.2).

The views of interest appear undistorted as subregions of the multiperspective image.
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Fig. 2.2.: Multiperspective visualization that integrates two input views. The user
explores the dataset interactively and selects two views of interest (overhead view,

left, and views of interest, middle); then the system connects the two views
seamlessly in a multiperspective image.

Fig. 2.3.: Multiperspective visualization (left) of an urban dataset showing two
targets (red and yellow dots) that are occluded in a conventional visualization
(right). The targets are shown where they would be visible in the conventional

visualization in the absence of occluders.
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Fig. 2.4.: Multiperspective visualization of a protein molecule dataset with three
focus regions (top), and conventional visualization (bottom), for comparison. The
focus regions have different viewpoints than the overall visualization, revealing the

two bonds of the yellow atom.
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Fig. 2.5.: Multiperspective volume rendering of a density engine block dataset (left)
and conventional visualization (right), for comparison. In the multiperspective
visualization the viewpoints of the two focus regions are adjusted to provide a

visualization along the piston axes.

This scenario is supported with a bottom-up multiperspective camera constructor that

integrates conventional views.

Consider a third scenario where the goal is to avoid occlusions to one or several

data subsets of interest, i.e., targets. As the targets move, the visualization adapts

automatically to keep the targets visible (Fig. 2.3). The targets are shown where they

would be visible in the conventional image in the absence of occluders, which conveys

to the user the correct direction to the target. When the targets move to locations

where they become visible, the multiperspective visualization reverts automatically

to a conventional visualization, which can be used as is since it does not suffer from

occlusion.

We demonstrate our multiperspective framework in the context of terrain (Figs.

1 and 2), urban (Fig. 2.3), and molecular biology (Fig. 2.4) datasets. Since our

multiperspective visualization approach is based on an intervention on the underlying

camera model, our approach ports straightforwardly to volume rendering of density

datasets by ray casting (Fig. 2.5).
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2.2 Prior Work

The more 3D datasets grow in complexity, the more occlusions stemming from

the single viewpoint restriction of conventional images become a limiting factor in

visualization. Occlusions are an open research problem that has been approached

from many directions [6]. We limit the discussion of prior work to deformation and

multiperspective techniques that are most relevant to our approach.

Gaining an unobstructed line of sight to a data subset of interest can be done by

deforming the dataset. The idea was first used in the context of 2D data visualization,

e.g., in the context of graph visualization [7], and it was subsequently extended to 3D

datasets, e.g., in the context of short route [8] or car navigation [9], [10] visualization.

The goal is to achieve the desired occlusion alleviation by deforming the dataset

as little as possible. The deformation approach is the dual of the multiperspective

approach. Visualizing a distorted dataset with a conventional camera can be seen

as visualizing the original dataset with a multiperspective camera. For example, the

multiperspective image in Fig. 2.3 could be obtained by distorting the urban dataset

and then visualizing it with a conventional camera. For volumetric datasets, we can

alternatively distort the intermediate sampling agents [11]. The difference is that

multiperspective visualizations are constructed by modifying the underlying camera

model. The occlusion alleviation effect is designed with great control directly in the

image domain, as opposed to indirectly in the 3D dataset.

Multiperspective visualization originates in art, where the single viewpoint con-

straint is occasionally abandoned in the interest of artistic expression, effects that were

replicated by computer graphics systems [12]. One practical application is to generate

panoramas that alleviate occlusions and emphasize important landmarks and terrain

features as needed for example for hiking and skiing maps [13], [14], [15]. This prior

work handles height-field terrain dataset, with regions of interest known a priori, and

it automates the expertise of professional illustrators. Multiperspective images have

also been used to integrate photographs taken from different viewpoints (e.g., street
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panoramas [16], [17]). In 2D animation, a single multiperspective panorama provides

an animation sequence by sliding the frame rectangle over the panorama on a pre-

defined path [18]. Both street and 2D animation panoramas are limited to special

scenes.

Compared to these panorama techniques, our approach allows for interactive ex-

ploration of the dataset in search of regions of interest that might not be known a

priori. Furthermore, the datasets are not restricted to height fields, and the focus re-

gions are imaged without distortion. Like conventional focus+context visualization,

we have the goal of an unequitable distribution of image samples in favor of the focus

regions, whereas panoramas excel at pursuing visualization comprehensiveness.

The generality and flexibility of multiperspective visualization increased through

innovations at camera model level. Multiple center of projection images [19] are

obtained by rendering a 3D dataset with a one-column camera that slides along a

path (i.e., a push-broom camera). Samples from thousands of viewpoints are inte-

grated into a continuous image. The user has good control over viewpoint selection

by designing the acquisition path. However, rendering the image is too expensive for

interactive visualization or time-varying datasets, as it involves one rendering pass

for each image column. Our multiperspective rendering framework relies on a more

efficient parameterization of the ray space based on a few (i.e., 10-20) camera seg-

ments, which provides the needed occlusion alleviation flexibility without sacrificing

rendering performance.

The general linear camera (GLC) [20] is at the other end of the multiperspec-

tive camera complexity spectrum by possibly being the simplest non-pinhole camera.

The rays of the GLC are obtained by interpolating three input rays, and in the case

of multiple GLC’s, by interpolating the rays from all GLC’s which overlap on the

image plane [21]. The GLC provides fast projection, which ensures rendering effi-

ciency. Given a 3D point inside the GLC frustum, one can compute the barycentric

coordinates of the point’s projection on the triangular GLC image by solving linear

equations. However, the original parameterization of rays does not provide continu-



18

ity between adjacent GLC’s that share two construction rays. A continuous GLC

parameterization has been subsequently proposed [22], which comes at the cost of

cubic projection equations. A single GLC doesn’t have the occlusion alleviation ca-

pability needed in multiperspective visualization, but we use continuous GLC’s in our

framework to model camera segments, as described in Section 2.3.

Occlusion cameras are a family of non-pinhole cameras designed to extend the

viewpoint of conventional cameras to a view region [23]. The camera rays are bent

at occluder silhouettes to capture ”barely hidden” samples, which are samples that

become visible for small viewpoint translations. The resulting image is a high-quality

aggressive solution to the from-region visibility problem, i.e., it finds most but not

all visible samples. Occlusion cameras generalize the viewpoint to a continuum of

nearby viewpoints, whereas what is needed for multiperspective visualization is a

generalization of the viewpoint to a small set of distant viewpoints.

The needed viewpoint generalization is provided by the graph camera [24]. Start-

ing from a conventional planar pinhole camera, the graph camera is constructed

through a series of frustum bending, splitting, and merging operations applied re-

cursively. The resulting camera is a graph of PPC segments. The piecewise linear

rays are designed to circumvent occluders and to reach far into the dataset. Com-

pared to the graph camera, the camera employed in our multiperspective framework

is built from a mix of PPC and continuous general linear camera (CGLC) segments.

The CGLC segments enable frustum splitting while maintaining image continuity,

thereby overcoming a major shortcoming of the graph camera (see Section 2.4.1).

Graph cameras can only be constructed automatically using a 2D maze with right

angle intersections as scaffold, whereas in our framework the multiperspective cam-

era is built automatically, in 3D, to track targets or to integrate conventional input

images. Finally, the graph camera does not allow controlling where a data subset of

interest is imaged, whereas our framework allows imaging a subset where it would be

imaged in a conventional visualization. This enables the user not only to examine

but also to locate the subset of interest.
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Inspired by the nonlinear trajectory of light in proximity of large masses, multiper-

spective visualizations have been proposed based on curved rays [25], [26], [27], [28].

Curved rays have later been used for visualization outside of astronomy using ray

segments connected with Bezier arcs [29]. The advantage of curved rays is that the

transition from one viewpoint to the next is gradual, which reduces the distortion for

objects that are imaged from more than one viewpoint. The cost is a lower rendering

performance due to the higher camera complexity. Localized curved ray traversal [30]

alleviates this problem, but is unsuitable for deforming the context region. The curved

ray camera is a 1D sequence of camera segments and it does not support splitting,

which limits its applicability to removing the occlusion for a single target. We use

piecewise linear rays, with C0 continuity, but the C1 continuous rays of the curved

ray camera [29] could be integrated into our framework for applications where the

additional cost is warranted.

In conclusion, prior work has demonstrated the potential of flexible visualizations

that enable a local changes to resolution and viewpoint. The work presented in this

chapter is inscribed in the multiperspective visualization line of research. Our con-

tributions include (1) a novel multiperspective camera model that generalizes the

graph camera with CGLC nodes, which enables sampling the entire viewing volume

continuously and non-redundantly, while still providing the fast projection operation

essential to efficient feed-forward rendering; (2) an interactive camera constructor

that allows the user to define several nonoverlapping focus regions and to tune the

viewpoint for each focus region independently, while maintaining visualization conti-

nuity to the context region; (3) a top down and a bottom up camera constructor that

allow splitting a root PPC into multiple perspectives as well as merging several PPCs

into one common perspective; (4) a target tracking constructor that builds the cam-

era model to ensure data subsets of interest remain occlusion free as the visualization

camera or the data subsets move.
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Fig. 2.6.: Overview of our multiperspective interactive visualization framework. For
each frame, the multiperspective camera model is constructed first, in one of three

ways, and then the multiperspective image is rendered.

2.3 Multiperspective Camera

Fig. 2.6 gives an overview of our framework. For each frame, the multiperspective

camera model is constructed first. The camera model can be constructed with user

input using a graphical user interface. The camera model can also be constructed

automatically in top-down fashion, in bottom-up fashion, or to track data subsets

of interest, i.e., targets. The camera model is interpolated with the camera of the

previous frame to limit the magnitude of frame to frame camera model changes or with

a conventional PPC in order to revert the multiperspective visualization back to a

conventional visualization. Then geometry datasets are rendered by multiperspective

projection followed by conventional rasterization, and density datasets are volume

rendered by ray casting. In this section, we first describe the multiperspective camera

model, we then describe how 3D datasets are rendered with the camera to obtain

multiperspective images, and finally we describe how the camera is constructed in

one of three ways to support interactive multiperspective visualization.
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2.3.1 Camera Model

A camera model is a function that assigns a ray to each image plane sampling

location. We have designed a multiperspective camera model based on the following

considerations.

Flexibility; the camera should be able to integrate conventional PPC frusta in

order to generate a multiperspective image that shows subsets of interest undistorted,

each from its own viewpoint. Moreover, the camera should support a smooth, gradual

change of the perspectives it integrates to enable effective interactive exploration of

a dataset where users change the regions on which they focus, and to enable the

visualization of a dynamic dataset, where the regions of focus can move over time.

Continuity and non-redundancy; the camera rays should sample the entire space

subtended by the regions of interest, without gaps, in order to connect the images of

the regions of interest with continuous context. Like in conventional focus+context

visualization, continuity is important to show correctly the connection of the focus

region to the context. Visualization discontinuity would place a significant additional

cognitive load on the user who has to establish mentally the connection between the

focus region and the context. Each point in the sampled space should be sampled by

exactly one ray. This implies rays cannot intersect or, equivalently, the camera model

projects one point in space to one point on the image.

Projection efficiency; given a 3D point inside its frustum, the camera model should

provide a fast method for computing the image plane projection of the point in order

to support efficient rendering on the GPU by projection followed by rasterization.

Fig. 2.7 gives a 2D illustration of our multiperspective camera model. A root PPC

segment a, with viewpoint V0 is used to integrate two leaf PPC segments, b and c

with viewpoints V1 and V2. Segments b and c sample the data subsets of interest;

they are connected to a with camera segments e and f , each implemented with two

CGLCs.
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Fig. 2.7.: Camera model that integrates two conventional images with viewpoints V1
and V2 into a multiperspective image. The green camera segments are implemented

with conventional planar pinhole cameras. The orange camera segments are
implemented with continuous general linear cameras. The rays are piecewise linear,

e.g. L0L1L2L3 and R0R1R2R3.
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Using Fig. 2.7 again, camera segments f and g sample the dataset in between

the subsets of interest to connect the two images with continuous context. Each of

them is implemented with two CGLCs. The camera has piecewise linear rays. Ray

L0L1L2L3 has three segments, one for each of the camera segments it traverses. Line

L2L3 passes through V1, and line L0L1 passes through V0. The far planes F0F1, F1F2,

and F2F3 define the far boundary of the camera. CGLC camera segments are the

simplest camera segments that tile seamlessly both laterally and longitudinally. A

CGLC segment can act as a wedge in between two conventional camera segments to

achieve a smooth transition. CGLC segments can be stacked to change ray direction

as needed for occlusion alleviation.

The camera model allows tuning the percentage of the multiperspective image

pixels allotted to each subset of interest (b and c) and to the context (g), by changing

how many of the rays of a are routed to each of the connecting camera segments d, f ,

and e. Fig. 2.7 shows a typical case where the context g is sampled at low resolution

in favor of the subsets of interest b and c. The multiperspective camera can morph

to a conventional PPC by straightening its piecewise linear rays to become single line

segments. This is achieved by gradually translating V1 and V2 to V0 and by aligning

the connecting camera segments d, f , and e with rays from V0 (Fig. 2.7).

In summary, our multiperspective camera is a graph camera [24] where some of

the camera segments are CGLC [22] segments. The CGLC segments allow sampling

the entire viewing volume continuously and non-redundantly.

2.3.2 Rendering by Projection & Rasterization

A 3D dataset modeled with triangles is rendered on the GPU by projection fol-

lowed by rasterization.
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Fig. 2.8.: Continuous general linear camera frustum. The endpoints L1 and L2 of
ray L1L2 have the same barycentric coordinates in triangles A1B1C1 and A2B2C2.

3D point P projects at L1.

Projection

Given a 3D point P , the point is projected with each camera segment until a

valid projection is found. A projection is valid if P is inside the frustum of the

camera segment. PPC segments use the conventional projection. Fig. 2.8 illustrates

the projection of a point P with a CGLC frustum. The CGLC rays, which have

non-concurrent lines, travel from A2B2C2 to A1B1C1. Projection has to find the ray

through P , to compute the intersection L1 of the ray with A1B1C1, and then to map

L1 to the multiperspective output image. First we find a plane through P that splits

the CGLC construction ray segments A1A2, B1B2, and C1C2 in the same ratio t:

t =
A1A

A1A2

=
B1B

B1B2

=
C1C

C1C2

(2.1)
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Parameter t is computed by solving a cubic equation. Once t is known, points A,

B, and C are known, and one can compute the barycentric coordinates (α, β, γ) of

P in triangle ABC. (α, β, γ) are found by inverse barycentric interpolation, which

implies solving a quadratic. Then the projection L1 of P onto A1B1C1 is computed

as:

L1 = αA1 + βB1 + γC1 (2.2)

The projection is valid iff 0 ≤ t ≤ 1 and the barycentric coordinates (α, β, γ) sat-

isfy α, β, γ ≥ 0 and α+β+γ = 1. The continuity condition requires that neighboring

CGLC frusta tile seamlessly, and the non-redundancy condition dictates that there

can be at most one valid projection for each point in the data space. This implies

that no two frusta intersect, and all frusta are convex.

Once a valid projection is found, the projected point L1 can be projected recur-

sively with each camera segment upstream along the path to the root segment. The

final barycentric coordinates then linearly map to the multiperspective output image

coordinates for P . However, one does not need to project recursively the point P .

Instead, we map the vertices of the near face of each camera segment to the multiper-

spective output image during camera construction. Using Fig. 2.8 again, let (uA, vA),

(uB, vB), and (uC , vC) be the output image coordinates of A1, B1, and C1. Then the

output image projection (u, v) of P is computed as:

(u, v) = (αuA + βuB + γuC , αvA + βvB + γvC) (2.3)

Rasterization

The projection of a triangle contained by a CGLC segment has curved edges. We

approximate CGLC rasterization with conventional rasterization and we control the

approximation error by subdividing any large triangle offline. Visibility is computed

using the regular depth test. The z value used is the fractional parameter t that

locates the 3D point within its camera segment, plus the camera segment index i.
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Camera segments are depth indexed from the root to the leaf segments. In Fig. 2.7,

a has depth index 0, d, f , and e have depth index 1, and b, g, and c have depth index

2.

2.3.3 Rendering by Ray Casting

For some visualization techniques, such as volume rendering [31], the multiperspec-

tive image cannot be computed by projection followed by rasterization. To support

such techniques, one has to be able to compute the piecewise linear ray for a given im-

age plane location. Computing the ray is similar to the projection operation, but this

time we move downstream from the root to the leaf camera segments. Using Fig. 2.7

again, given image plane point L0, the first segment L0L1 of the ray is computed by

intersecting V0L0 with the far face of camera segment a. Then, L2 is computed on

the far face of d using the barycentric coordinates of L1 on the near face of d. This

defines the second ray segment L1L2. Finally, b is a PPC segment and the third ray

segment L2L3 is computed by intersecting V1L2 with the far face F0F1 of b.

2.3.4 Camera Construction

We have developed three methods for constructing the multiperspective camera.

Bottom-Up Construction

In bottom-up construction, the user navigates a conventional PPC through the

dataset using the keyboard for translation and rotation commands. As views of

interest are found, the user saves them as the PPC segments b and c (Fig. 2.7). The

relationship between the views of interest is conveyed with an overhead visualization

(left image in Fig. 2.2, also see video). Once both b and c are saved, the system

constructs the remaining segments automatically as follows. V0 is positioned first in

front of the near faces of b and c. The field of view of a is chosen to encompass the
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Fig. 2.9.: Multiperspective camera model with the structure shown
in Fig. 2.7 constructed in bottom-up fashion for the scenario shown

in Fig. 2.2. The green, blue, and red frusta correspond to camera segments a, b, and
c in Fig. 2.7.

near faces of b and c and to capture additional foreground and background according

to user specified parameters. Finally, segments f and g are constructed to bridge the

gap between (d, e) and (b, c). Fig. 2.9 illustrates the multiperspective camera model

from Fig. 2.7 specialized for the scenario shown in Fig. 2.2. Only the central row of

rays is shown.

Top-Down Construction

The user starts by navigating a conventional pinhole camera that provides an

overview of the dataset. The user can explore a data subset in more detail as follows.

First, the user clicks on a dataset point C that will serve as the center of the focus

region (Fig. 2.10). Then, the user constructs a rectangular focus region S centered at

C. The focus region defines a camera segment that corresponds to a bundle of rays

of the overview camera. The user rotates the camera segment interactively to change
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Fig. 2.10.: Top-down construction around point C, the center of focus region S.
The lines of the bundle of rays in the focus region converge at viewpoint V1, which
rotates around C by user input. The transition region (grey) gradually reverts the

perspective to the main viewpoint V0.

perspective on the focus region. The revolution of the camera keeps the focal point C

in the center of the focus region. The focus region is padded with a transition region

over which the perspective reverts gradually and continuously from the perspective

of the camera segment to the main perspective of the overview camera (Fig. 2.4).

Target Tracking Construction

The construction of the multiperspective camera for tracking a single target is

illustrated in Fig. 2.11. The target T is occluded from V0. In the absence of the

occluders, T would be visible at P . The construction algorithm reroutes the rays of

the pixels around P to go around the occluders. This way the target is visible in the

multiperspective image at P , and the occluders are ”pushed downwards” (i.e., to the

bottom of the image). The rays are rerouted using four camera segments a, b, c, and d.

The neighboring camera segments (grey) transition back to the planar pinhole camera,

encapsulating the perturbation needed for target tracking. All camera segments have

parallel near and far base planes. For projection, plane ABC (Fig. 2.8) is simply

constructed parallel to the base planes, which saves having to solve the cubic equation
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Fig. 2.11.: Multiperspective camera avoiding the occlusion of target T . T would be
visible at P in the absence of occluders. The bundle of rays around P is routed just

clear of the two occluders (tall and short black rectangles) hiding T .

to find parameter t (see the Projection Section 2.3.2). Segment d has the original

viewpoint V0 so T is seen as it would be seen in the absence of occluders.

Multiple targets can be tracked at once, and the targets can converge and then

diverge again (see Fig. 2.3 and video). We do not construct one complex multi-

perspective camera that removes occlusions to all targets. Rather we construct one

multiperspective camera for each target independently and compute the final pro-

jection of a vertex by projecting the vertex with each camera and by computing a

weighted average of the preliminary projections. The weight of a preliminary pro-

jection is based on how much the projection is shifted from where the vertex would

project with a conventional PPC. Larger shifts correspond to larger weights. When

targets do not overlap in the image plane, the projection of a vertex is affected by at

most one target, and the vertex is projected as in the case of a single target. When
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two targets overlap, the preliminary and final projections of a vertex at the region of

overlap are the same.

2.4 Results and Discussion

We have tested our approach for managing occlusions in three scenarios and with

several datasets. We first discuss the occlusion alleviation capability of our approach.

Then we discuss the multiperspective rendering performance achieved, which is im-

portant for interactive visualization. Finally we discuss limitations.

2.4.1 Quality

The major design concerns for our multiperspective visualization framework are

visualization construction flexibility and image continuity. As shown in the images in

this chapter, flexibility has been achieved through a camera model that allows modi-

fying the viewpoint for individual regions of a given image, connecting conventional

images with continuous context, and tracking one or more targets while avoiding

occlusions.

Fig. 2.12 shows that our framework can connect two conventional images with

opposite views into a continuous image, whereas a similar image rendered with the

prior work graph camera framework [24] suffers from discontinuities which cannot

always be hidden behind geometry. As shown in the accompanying video, in a graph

camera visualization, an airplane flying above the city disappears and reappears twice

as it crosses the discontinuities. In our visualization, the airplane is visible at all

times. We achieved this improvement by using CGLC frusta that can perform a

split of perspective while sampling the entire space in between the outgoing branches

without leaving any void; the PPC frusta used by the graph camera cannot perform

the split operation without voids, which result in visualization discontinuity.

Fig. 2.13 shows that our framework can reveal a target hidden in a heavily oc-

cluded dataset with only minimal image distortions. The framework supports mul-



31

Fig. 2.12.: Multiperspective image rendered with our framework (top) that
integrates two opposite views (middle) and image rendered with the prior art graph

camera framework for comparison (bottom). Our image visualizes the entire sky,
whereas the graph camera image misses parts of the sky at the two vertical

discontinuities shown with black line segments.
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Fig. 2.13.: Multiperspective image rendered with our framework that tracks a target
in a heavily occluded dataset (left); conventional image with hidden target, for

comparison (right).

tiple moving targets which can converge to the same image region and then diverge

again. Compared to the curved ray camera [29], which supports target tracking only

through sequential multiple viewpoints, our target tracking framework brings two im-

provements. First, by using flexible CGLC frusta which tile laterally, one can connect

the target tunnel to the undistorted peripheral frustum seamlessly, as shown by the

grey shaded area in Fig. 2.11. Second, the flexible CGLC frusta allow projecting

the target itself and its background onto the image plane at the exact undistorted

position and scale, as shown in Fig. 2.3. The curved ray camera visualizes the target

at a completely different image location than where the target would be visible in the

absence of occluders.

Our method is part of the general multiperspective class of occlusion managing

techniques. As described in the prior work section, a dual approach for managing oc-

clusions is to deform the dataset such that when viewed with a conventional camera
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the regions of interest are not occluded. Once the multiperspective camera is defined,

one could compute a distorted dataset as follows. Consider dataset vertex V that

projects with the multiperspective camera at pixel p. Let z be the depth of V along

the multiperspective ray that projects it. Compute the deformed position V ′ of V by

unprojecting p at z with a conventional camera (i.e., along a straight ray). Render-

ing the deformed dataset with a conventional camera produces the multiperspective

image.

One advantage of the multiperspective approach over the deformation approach is

in a scenario where the targets for which occlusion should be avoided are not known a

priori. In such a scenario, the multiperspective camera provides a convenient way of

exploring parts of the dataset without requiring the user to navigate the main camera

to each part. Our camera has the ability to extend ”branches” to preview dataset

regions without the user interface manipulation and the disorientation inherent to

navigating a conventional camera around occluders and retracing one’s steps. The

piecewise linear rays simulate translating the camera to reveal the target, providing

an intuitive preview of what would be seen if the camera were actually translated.

A second advantage is that the leaf camera is a conventional camera so the target of

the exploration is always visualized distortion free.

Out of all our examples, the target tracking in the urban dataset is probably the

easiest to replicate with the deformation approach. Here the targets are known, and

deformation would simply shrink the height of all buildings along the line of sight

to the target. However, the buildings close to the target would have to be shrunk

completely, to street level, which affects their recognisability. For the case in Fig. 2.13,

the deformation approach would have to visualize the occluding building below the

target with essentially only a contour of its roof, whereas our visualization achieves

occlusion alleviation while conveying the height of the building (Fig. 2.13, left).

Our top-down constructor supports changing the viewpoint for any number of

disjoint focus regions (Fig. 2.4), and the target tracking supports multiple dynamic

targets that can overlap (Fig. 2.3, video). Our approach relies on modifying the rays
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of the underlying camera used to compute the visualization. Therefore the framework

can be leveraged in the context of most visualization techniques. For example, in the

case of volume rendering (Fig. 2.5), the rays of the multiperspective camera can be

traced through the volume dataset to integrate opacity like in conventional volume

rendering.

Like any deformation or multiperspective visualization approach, our technique

introduces distortions to make room for the samples of the region of interest that is

occluded in a conventional visualization. The distortion is confined to the transition

region. Even so, some applications might prefer that the parts of the visualization that

deviate from a conventional planar pinhole camera visualization be clearly indicated to

the user. We achieve this with one of two modes: a red highlight commensurate with

the amount of distortion (Fig. 2.14, top) and an undistorted wireframe rendering of

the parts of the dataset affected by the distortion, overlaid onto the multiperspective

visualization (Fig. 2.14, bottom).

2.4.2 Performance

The timing information reported in this chapter was collected on an Intel Xeon

E5-1660 3.3 GHz workstation with 16 GB of memory and with an NVIDIA Quadro

K5000 4 GB graphics card. The implementation uses OpenGL and Cg [32] GPU

shaders.

For datasets modeled with triangles, multiperspective rendering is implemented

with a vertex shader that implements the multiperspective projection. The vertex is

projected with each camera segment until a valid projection is found. Vertices outside

the 3D axis aligned bounding box of the camera segment are trivially rejected. We

start with the leaf segments (i.e., b, c, and g in Fig. 2.7), which are the largest and

are therefore most likely to contain the vertex. For volume rendering, the fragment

shader computes and traces the ray at the current pixel with even steps, integrating

opacity and translating it to color using a transfer function.



35

Fig. 2.14.: The amount of dataset distortion visualized by a red highlight (top) and
by an undistorted wireframe rendering (bottom).
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Table 2.1.: Multiperspective Rendering Performance

Dataset Triangles Resolution View Frame rate [fps]
Terrain 2,119,522 1,920×720 Fig. 2.1 46

Fig. 2.2 30
Manhattan 3,691,768 1,280×960 Fig. 2.3 26

Fig. 2.13 30
Eurotown 3,751,621 1,440×1,440 Fig. 2.12 28
Protein 1,438,992 1,920×720 Fig. 2.4 251
Volume 256×256×110 640×640 Fig. 2.5 8.9

The multiperspective rendering performance of our framework is given in Ta-

ble 2.1.

We achieve interactive performance in all cases. Geometry rendering (all rows

except for the last one) is much faster than volume rendering by ray casting (last

row). However, volume rendering with a conventional PPC yields only a slightly

better frame rate of 9.4 Hz, This confirms that the overhead of tracing along piecewise

linear instead of linear rays is marginal. Rendering the Protein dataset is much faster

than the other datasets because only a small fraction of dataset vertices project inside

the focus regions, therefore the majority of the vertices are projected conventionally

at a smaller cost. When the cubic projection equation has to be solved, we have

found that solving the equation numerically is faster than evaluating the closed-form

solution expression.

The nonlinear projection of the multiperspective camera implies that rasterization

is also not linear. In other words, the nonlinear projection applies not only to the

vertices of a triangle, but also to its interior. There are two major approaches to

nonlinear rasterization, and we have experimented with both. One approach is to

actually perform nonlinear rasterization in the fragment shader. For this, one first

has to derive a method for approximating the image plane axis aligned bounding box

of the projection of the triangle. Since the projected triangle now has curved edges,

the approximation has to consider more than the vertices of the projected triangles.

Then, nonlinear rasterization can be performed in 3D, by intersecting the dataset
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triangle with the ray of each pixel of the axis aligned bounding box and interpolating

rasterization parameters using the barycentric coordinates of the intersection point.

A second approach is to approximate nonlinear rasterization with conventional raster-

ization but making sure the projected triangles are small enough. Online subdivision

requires a geometry shader that issues a varying and potentially large number of

primitives, which is a severe performance bottleneck. Offline subdivision has to be

done in view independent way which can result in subdivisions that are either too

coarse or to detailed for a particular viewpoint.

We have chosen the approach of offline subdivision. The cost of true nonlinear

rasterization is unwarranted for the following three reasons. First, today’s complex

datasets are modeled with small triangles who can be rasterized conventionally with

good results, without subdivision. Second, the focus regions are imaged with PPC

segments where conventional rasterization is accurate, and nonlinear rasterization

is only used for regions whose role is limited to providing context. Third, using

conventional rasterization implies that there are no changes at the fragment shader,

which makes our framework portable to any existing visualization effect.

Fig. 2.15 shows that the time needed to render a frame is linear with the number

of focus regions. The time to render the dataset conventionally is ∼1.3 ms, and each

focus region adds 0.8 ms.

2.4.3 Limitations

There is no fundamental limitation on the number of perspectives integrated using

our framework. The top-down constructor supports any number of focus regions, and

the target tracking constructor can handle multiple dynamic, possibly overlapping

targets. However, all constructors presented here require that the camera segments

be disjoint, which is harder and harder to achieve when the number of perspective

increases. Overlapping camera segments translate to repeated visualization of the

primitives located at the region of overlap, and such redundant visualization might
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Fig. 2.15.: Frame time as a function of number of focus regions, for the Protein
dataset shown in Fig. 2.4.
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not be useful. Supporting redundant visualization with good performance is difficult

because each vertex can have a variable number of projections. Moreover, each of

three vertices of a triangle can have a different number of projections (i.e., some

vertices are inside more camera segments than others), and projecting such a triangle

requires clipping with individual camera segments.

The multiperspective visualization effectiveness decreases as the number of per-

spectives increases. First, the user interaction required to define camera models with

many perspectives becomes complex. Second, the number of display pixels allotted

to each perspective decreases, which limits the ability to convey clearly each perspec-

tive to the user. Multiperspective visualization trades image resolution for resolution

along the view direction. Sufficient image resolution is needed for this trade-off to be

beneficial. Third, the comprehensibility of the image decreases with the number of

perspectives.

Another consideration that limits the number of perspectives is the decrease in

performance brought by the increase in camera model complexity. Whereas for our ex-

amples good performance was obtained by projecting every vertex with every camera

segment, scalability with the number of camera segments requires a faster method

for determining the camera segment that contains a vertex. The frusta of CGLC

segments do not have planar side faces therefore a scheme that subdivides space hi-

erarchically using planes (e.g., a binary space partitioning tree or a kd-tree) will not

separate two adjacent camera segments cleanly. Instead, one should use bounding

volume hierarchies like the ones developed for ray casting acceleration. The goal is

to achieve an O(logs) projection time, where s is the number of camera segments.

Our multiperspective visualizations transition abruptly from one camera segment

to the next. Even though the visualization is C0 continuous, the abrupt transition can

result in noticeable distortions (Fig. 2.16, video). We distinguish between two types of

camera segment to camera segment transitions. A longitudinal transition is defined

at the far face of an upstream camera segment that serves as the near face of the

next, downstream camera segment, e.g., segment d to b in Fig. 2.7. At a longitudinal
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transition, the piecewise linear rays break from the current linear segment to the next.

A lateral transition is through a shared lateral face of two adjacent camera segments,

e.g. d and f in Fig. 2.7. Rays do not traverse these lateral faces and are not affected

by the lateral transition.

The distortion introduced by longitudinal transitions can be alleviated with two

approaches. One approach, demonstrated by the curved ray camera framework [29],

relies on rays modeled with Bézier arcs to transition from one viewpoint to the next,

solution that can be adapted to our framework. A second approach is to subdivide

longitudinally the connective camera segments (i.e., d, e, f , and g in Fig. 2.7), in

order to achieve a gradual viewpoint change. The rays remain piecewise linear, but

the ray segments are shorter which reduces the change in direction from one segment

to the next.

The distortion introduced by lateral translations can be alleviated by subdividing

a CGLC segment into a fan of CGLC segments. In Fig. 2.7, f would have to be

subdivided into several segments, with the left-most sub-segment having a ray pattern

very similar to camera segment d and with the right-most sub-segment having a ray

pattern very similar to e.

Like any multiperspective or deformation approach, our visualization framework

is not well suited for applications where it is important to convey global spatial

relationships accurately. Our framework is well suited in an exploratory context

where it saves the user to have to navigate around occluders in search of regions of

interest or in contexts where the regions of interest are known and the main goal

is to keep the targets visible, surrounded by context. Our framework shows the

regions of interest free of distortions, as they are imaged with a conventional camera,

and the distortions are confined to a transition region, beyond which the original

visualization is not perturbed. Finally, an important design concern for the target

tracking constructor is to image the target where it would be seen in the absence

of occluders, correctly conveying the spatial relationship between the user and the

target.



41

Fig. 2.16.: Fragments of the multiperspective visualization from Fig. 2.12 showing
an airplane flying over the buildings. The airplane appears distorted as it crosses

from one camera segment to the next (images with red border) and it is not
distorted while completely contained by one segment (images with black border).
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Another fundamental limitation inherited from the general class of multiperspec-

tive visualization approaches is the requirement that there is an unobstructed path

from the user to the target, along which to route the rays to achieve occlusion alle-

viation. When such a path does not exist, e.g., in the case of an engine with internal

parts, our approach has to be used in conjunction with other occlusion management

techniques such as explosion [33], [34], cutaway [35], and transparency [36] approaches.

2.5 Conclusions and Future Work

We have presented a framework that advances the state of the art in multiper-

spective visualization: the framework allows constructing continuous multiperspective

visualizations by changing the viewpoint for individual focus regions in an image, by

connecting input images with continuous context, and by alleviating occlusions to

moving targets without distorting or displacing the target subimages.

The framework relies on a flexible yet fast multiperspective camera. Whereas a

conventional camera has a few parameters with which the application can interact

directly (e.g., three rotations, three translations, focal length), our multiperspective

camera comprises 10-20 camera segments which amounts to hundreds of parameters.

The power of our framework comes from the three constructors that set all these

parameters automatically to construct the desired multiperspective visualization. The

constructors relieve the application from tedious low-level specification of the camera

model, in favor of formulating high-level constraints that are satisfied automatically.

We have demonstrated our multiperspective visualization framework in the con-

text of datasets modeled with triangles (i.e., terrain, urban, and bio molecular datasets)

and in the context of volume rendered datasets. The framework is readily usable with

datasets modeled with other types of geometric primitives, such as spherical parti-

cles, as long as the geometric primitives can be tessellated. Future work could focus

on supporting higher order primitives without incurring the cost of full 3-D tessel-

lation, for example by applying the multiperspective projection only to the particle
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center and by resorting to a custom approximate rasterization. The examples shown

in this chapter use rectangular focus regions. The smallest building block of our

multiperspective camera is a CGLC which has a triangular frustum. Future work

could examine defining focus and transition regions of more complex shapes based on

polygons tessellated with triangles.

We see our work as making a visualization infrastructure contribution that en-

hances the information bandwidth of images. As such, we foresee that our work

brings multiperspective visualization one step closer to becoming a tool for virtu-

ally all applications where visualization is needed. Our multiperspective visualization

can increase efficiency in a visual search, where using a conventional visualization

would require navigating the camera to a potential region of interest and then back,

if the region turns out to be a false positive. For example, when examining a density

dataset, a physician could change the viewpoint on a subvolume to better examine

it, without losing context. A molecular biologist could examine the fit between a de-

signed molecule and multiple receptor sites that cannot be all imaged with the same

conventional visualization due to occlusions.

Another direction of future work is the extension to multiperspective visualization

of real-world real-time datasets. Consider an urban scene captured with video cameras

mounted at intersections, on cars, and on aircraft. The building geometry is known,

for example from off-line LIDAR acquisition and conventional CAD modeling, like

is the case for our Terrain and Manhattan datasets. The goal is to integrate the

real-time video feeds into a multiperspective visualization that avoids occlusions for

one or more regions of interest. The geometric model acts like a connection between

the various video feeds, indicating the redundant parts of the feeds, as well as how to

assemble the feeds in a continuous multiperspective video panorama.

Our work advocates abandoning the traditional rigidity of the images used in

visualization in favor of flexible images that the user can optimize for each viewpoint,

dataset, and application.
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3. EFFICIENT VR AND AR NAVIGATION THROUGH

MULTIPERSPECTIVE OCCLUSION MANAGEMENT

3.1 Introduction

Tracked HMDs provide an intuitive interface for exploring virtual and real 3D

scenes in VR and AR applications. The user naturally selects the desired view by

walking and by rotating their head. However, the efficiency of such 3D scene explo-

ration is limited by occlusions. Consider the case of a VR exploration of a city model

with the goal of finding a specific street-level ROI. Tall buildings occlude the streets

and the user has to move considerable amounts to gain a direct line sight to the street

currently being examined. If the street proves to be empty, the user proceeds with

examining the next street. This sequential exploration is inefficient. In the case of a

dynamic ROI, such a sequential exploration might never find the ROI.

Consider the application of surveillance of corridors inside a building. Occlusions

prevent the user from seeing beyond the current corridor segment. The user has to

walk to each intersection sequentially in order to examine side corridors. Again, the

sequential exploration might never find a moving intruder. Even worse, if the intruder

is aware of the user’s position, the intruder can easily avoid being detected. Another

challenge of conventional navigation in VR and AR applications is that some of the

viewpoints best suited for alleviating occlusions are unreachable. Consider the VR

urban model mapped to a room. Walls and furniture might prevent the user from

assuming the viewpoint that establishes a direct line of sight to a ROI. For example, a

higher viewpoint is less affected by occlusion from the tall buildings, but a viewpoint

higher than the standing height of the user is hard to achieve.

In this chapter, we propose to increase VR and AR scene exploration efficiency

by enhancing the visualization with additional perspectives. The HMD shows to the
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user a multiperspective image that captures the scene from multiple viewpoints, yet

the image is non-redundant, with no parts of the scene being shown more than once,

and continuous, with nearby 3D scene points projecting to nearby image locations.

The ROIs occluded from the user’s viewpoint are captured from secondary viewpoints

and integrated into the original view. The additional perspectives are rendered with

correct disparity so the ”stereo” multiperspective HMD visualization provides appro-

priate depth cues to the user. We employ two types of multiperspective visualization,

designed to alleviate occlusions in two scenarios.

The first type of multiperspective visualization is designed to overcome occlusions

in an urban VR scene (Fig. 3.1, top). The second type is designed for AR visualization

of environments defined by cells connected by portals, such as a building interior with

rooms and corridors connected by doors and intersections (Fig. 3.1, bottom). The

visualization supports the simultaneous disocclusion of multiple ROIs (Fig. 3.2), as

well as the integration of RGBD streams acquired with depth cameras (Fig. 3.3).

In order to quantify any VR and AR navigation benefits brought by the multi-

perspective visualization, we have conducted a randomized controlled user study in

which the subjects were asked to perform four visual and navigational tasks in the

environments shown in Fig. 3.1. Our multiperspective VR and AR reduced viewpoint

translation by 45.2% and view direction rotation by 43.2%. We also refer the reader

to the accompanying video. To the best of our knowledge, our work is the first inves-

tigation of multiperspective occlusion visualization in VR and AR HMD applications.

3.2 Prior work

In VR applications, viewpoint navigation in the virtual scene is performed by

physical locomotion in a host real world scene. The quality of the navigation expe-

rience is essential to the success of the VR application. One challenge stems from a

mismatch between the size of the physical world accessible to the user and where the
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Fig. 3.1.: (Top) Multiperspective disocclusion in a VR exploration of an urban
scene: artist rendition of a second-person view (left), conventional VR visualization
(middle), and our multiperspective VR visualization (right). The user does not have

a direct line of sight to the red sphere, which is occluded in the a conventional
image; an additional perspective (green frustum) is used to route rays over the
occluding buildings (dashed blue line), which disoccludes the red sphere in the

resulting multiperspective image. (Bottom) Multiperspective disocclusion in an AR
exploration of a real world indoor scene: second-person image (left), conventional
image from user viewpoint (middle), and our AR multiperspective visualization

(right). The left side corridor is disoccluded by inserting an additional perspective
at the portal (red rectangle), which reveals the target (orange ghost).
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(a) Red sphere disoccluded (b) Blue sphere disoccluded

(c) Both spheres disoccluded (d) Conventional visualization

Fig. 3.2.: Simultaneous disocclusion of multiple ROIs through our multiperspective
visualization.

Fig. 3.3.: Left: the RGB camera with depth sensor accessory captures a RGBD
video stream that is converted to a 3D point cloud. Right: the point cloud, as seen
from the secondary perspective, is integrated into the primary perspective in the

multiperspective visualization.
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user can be tracked, and the size of the virtual world that the user wants to explore.

We discuss prior work that addresses this challenge in Section 3.2.1. A second chal-

lenge stems from the reduction in visualization efficiency caused by occlusions. In

conventional VR visualization, the user can only see parts of the scene to which there

is a direct line of sight. The user has to explore the scene sequentially, walking to

reach viewpoints from where region of potential interest is visible. We discuss existing

approaches for occlusion management in Section 3.2.2, and we compare our proposed

technique to prior multiperspective techniques in Section 3.2.3.

3.2.1 Physical to virtual world mapping

The virtual scene is frequently more expansive than the available physical space.

This limitation is worked around using in-place walking systems based on treadmills

[40] or inertial sensing hardware [41]. These methods interpret a subset of the user’s

motion associated with walking, such as feet or head motion, to infer the desired

locomotion. The drawback to in-place navigation systems is that the user does not

change the viewpoint naturally by walking. Our system allows the user to walk

freely, and, when desired, the user can save on the amount of walking by inspecting

an occluded area with the help of an intuitively deployed secondary viewpoint. If the

occluded area turns out to be a region of interest, the user can walk to it for further

intuitive visualization.

When the physical space is less restrictive, locomotion by actual walking is found

to be more intuitive for users [42,43]. The problem of navigating a large virtual scene

in a smaller physical space is well established. There exist methods such as redirection

[44, 45], variable scene scaling [46], variable translation gain [47], and pose resetting

[48]. Another approach is an optimized non-linear mapping from physical to virtual

space [49]. Although effective at extending the virtual scene beyond the physically

available space, these methods cause persistent discrepancies between perception and

reality, of which the user can become aware, making the navigation less intuitive
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[50, 51]. Our system does not attempt to hide the added supernatural visualization

capability, which is deployed at the user’s demand, with the secondary viewpoint

visualization anchored in the familiar single-perspective visualization from the user’s

viewpoint. Through the use of the secondary viewpoint, our system provides a limited

extension of the virtual world beyond the physical locations that the user can reach.

In AR applications, the graphical annotations must remain registered to the phys-

ical scene, therefore any navigation method that does not preserve the identity map-

ping between virtual and physical spaces is ill-suited to AR. Because the VR methods

mentioned improve navigation efficiency by diverging the virtual viewpoint from the

user’s physical location, they are not applicable to AR.

3.2.2 Occlusion management

Occlusion management is a promising approach to improving the efficiency of view-

point navigation in both VR and AR, while retaining navigation intuitiveness. Oc-

clusions reduce visualization effectiveness when the line of sight to the ROI is blocked

by opaque objects. Conventional approaches to occlusion management fall into cat-

egories of X-ray, cutaway, and explosion methods. Multiperspective approaches for

managing occlusions are discussed separately, in Section 3.2.3.

In X-ray visualization, the occluder is rendered semi-transparently so that oc-

cluded scene segments are visible through the occluder [52]. However, this visualiza-

tion technique violates pictorial depth cues because the background is blended with

the foreground. To alleviate this problem, the ghosting approach emphasizes fore-

ground information at the edges [53], or other salient features [54, 55], by overlaying

them as a ghost image. While adding a single processed foreground layer restores

missing depth cues [56], scaling with occluder complexity, which requires visualiza-

tion of multiple transparent layers, remains challenging. In addition, the compromise

must still be made between conveying foreground information and limiting visual

complexity, due to the overlapping image space position of the occluder and the ROI.
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In cutaway visualization, the occluder is completely removed instead of being

visualized transparently [35,57]. The removal of the occluder leaves a hole for the line

of sight to pass through and reach the ROI. Cutaway visualization maintains correct

depth cues, but extra geometry must be generated for cut surfaces surrounding the

hole, and little information about the removed occluders is conveyed.

Explosion methods segment the scene and translates the segments radially away

from the ROI to reduce occlusion. The method is widely employed in computer

aided design applications where the constituent parts are naturally separable by clear

boundaries, in accordance to assembly sequences [34]. Volumetric datasets support

explosion visualization when scene segments are annotated [33]. In AR applications,

explosion visualization is possible when there exist synthetic 3D models correspond-

ing to the physical objects [58]. In this case, the 3D models are required to visualize

scene segments from alternative perspectives as they are translated due to the ex-

plosion. Compared to X-ray visualization, which increases visual complexity, and

cutaway visualization, which omits foreground information, the explosion approach

is able to present the foreground without interfering with the visualization of the

ROI. However, explosion methods artificially fragment scene geometry which causes

discontinuities across scene segments. Furthermore, the translation of scene segments

hinder the user’s spatial awareness, which is undesirable in VR and AR applications.

Hybrid scene deformation methods seek to minimize disturbance to the scene geome-

try by combining multiple operations such as scene segment translation, scaling, and

viewpoint shifting [59]. However, this approach relies on extensive scene preprocess-

ing to identify scene segments, and optimization of cost functions tailored to these

scene segments. The viewpoint shifting operation also interferes with the navigation

in VR and AR.

Our method takes the multiperspective visualization approach, and we discuss

prior work in this category in detail in the next subsection. X-ray, cutaway, and

explosion visualization have the advantage of intuitiveness, as they can be seen as

applying a familiar change to the real world: the occluding layer is built out of trans-
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parent material, a hole is cut into the occluding layer, or the scene is disassembled into

individual parts. There is no familiar real world manipulation that achieves a similar

effect to multiperspective visualization. However, multiperspective visualization is a

powerful occlusion management technique with unique strengths.

3.2.3 Multiperspective visualization

Multiperspective visualization was first used in the visual arts, such as by Picasso

in his cubist paintings. The single viewpoint constraint is relaxed in favor of more

expressive images containing multiple integrated views. In imaging research, the

study of camera models progressed beyond the traditional pinhole camera to novel

cameras such as the push broom [60], the multiple center-of-projection [19], and the

general linear camera models [61]. The goal is comprehensive acquisition of real

world scenes with powerful imaging systems that overcome occlusions by capturing

rays from multiple viewpoints.

In desktop visualization, multiperspective cameras were developed to increase

the information bandwidth of images by alleviating occlusions. Occlusion cameras

[23] are a class of multiperspective cameras that generalize the viewpoint to a view

region by routing sampling rays around occluders. The curved ray camera routes

rays around occlusions through multiple sequential viewpoints with C1 continuity,

though it does not support branching to multiple viewpoints in parallel [29]. The

graph camera [24] generates a continuous and non-redundant multiperspective image

that integrates multiple disparate viewpoints using frustum bending, splitting, and

merging operations. The graph camera is literally a graph of conventional planar

pinhole cameras. The node cameras were subsequently upgraded to general linear

cameras to achieve multiperspective focus+context visualization: ROIs are shown

from secondary viewpoints, and the perspective reverts to the main viewpoint outside

the ROIs [1].
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Several prior multiperspective visualization efforts target specifically urban and

terrain scenes and opt for the approach of deforming distant, occluded geometry

upward, while pushing near, occluding geometry downward [62–64]. One system im-

proves spatial awareness through disocclusion in large-scale scenes, by providing the

user with a choice of a large number of video feeds acquired from multiple vantage

points [62]. The user selects the desired first person view from a third person view

of the available feeds, and then resorts to a two-viewpoint multiperspective visual-

ization to disocclude in the first person view. Compared with these techniques, our

method has the advantage of not distorting the ground plane, which prevents user

disorientation. Furthermore, our technique visualizes the disoccluded ROI exactly

where it would be seen in the absence of occluders, which enables building a men-

tal model of the target location. Benefiting from the stable ground geometry, our

visualization supports an intuitive user interface where a ROI is directly selected by

the user’s gaze towards the ground plane, as opposed to manually inputting deforma-

tion parameters [62]. When multiple ROIs are identified, our visualization deploys

multiple secondary views to disocclude individual ROIs with localized deformation of

the geometry, whereas prior work deforms large terrain partitions without low-level

granularity of the disocclusion effect [62–64].

Our visualization is able to augment the main physical view with secondary views

in AR. Prior work displays secondary views by inserting virtual billboards into the

scene [62,65]. This has the advantage of allowing the user to teleport to distant view-

points [62], whereas our method restricts the user to portals within sight. However,

the billboards displaying the secondary viewpoints in the overview suffer from visual-

ization discontinuity. Furthermore, the visualization based on monoscopic video lacks

depth perception, which our method achieves by rendering the geometric model for

each eye. Other prior work inserts deformed 3D geometry into the scene [66], but

there is significant discontinuity between the deformed geometry and the physical

world. In our AR visualization, secondary views are inserted as 3D geometry that

seamlessly integrates with the un-deformed physical geometry.
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We choose to build our multiperspective visualizations based on the graph cam-

era [24] and on the multiperspective focus+context [1] frameworks. We extend these

prior multiperspective frameworks to achieve an intuitive deployment of the additional

viewpoints based on head-tracking, and to achieve stereoscopic multiperspective ren-

dering as needed for the HMD. We measure the navigation efficiency increases in a

controlled user study with two VR and two AR tasks.

3.3 Multiperspective VR visualization in urban scenes

In the urban VR scene, ROIs at street level are occluded by tall buildings. Such

ROIs become disoccluded from an overhead perspective that has a viewpoint above

the ROI and a downward view direction. When the location of the ROI is not known,

as is the case for the tracking and matching tasks considered in this chapter, we

define the overhead perspective interactively under the assumption that the target

is at the street-level point of intersection between the user’s current view direction

and the ground plane. Once the secondary, overhead perspective is defined, the scene

is rendered with the resulting multiperspective camera model which integrates the

secondary perspective seamlessly into the primary, user perspective. The resulting

multiperspective image disoccludes the street-level look-at point without compromis-

ing the user’s spatial awareness.

3.3.1 Interactive construction of secondary perspective

The user attempts to locate the ROI by scanning the urban model. The goal is

to let the user see at street level, free of occlusions. The secondary perspective is

constructed to provide an occlusion-free visualization of a 3D focus point defined as

the intersection between the user’s view direction and the ground plane. To aid the

user in selecting the street-level point that should be disoccluded, a cursor is displayed

at the focus point. The secondary viewpoint is placed vertically above the focus point

at a height equal to the distance, r, from the primary viewpoint to the focus point
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Fig. 3.4.: Secondary viewpoint placement

(Fig. 3.4). The secondary perspective looks directly downwards and avoids occlusion

from nearby tall buildings. The secondary perspective is rendered with the same field

of view as the primary perspective, so, since the distance to the focus point is in the

same in both perspectives, the disoccluded ROI will be shown in the multiperspective

image at the same scale at which it would be seen in the primary perspective in the

absence of occlusions. We use the same secondary viewpoint for both the left and

the right user’s eyes, which we compute by defining the primary viewpoint as the

midpoint of the segment between the two eyes.

3.3.2 Secondary view integration

The integration of the secondary view into the user’s primary view of the scene has

to achieve three goals: (1) it has to give preference to the secondary view around the

ROI, in order to achieve the desired disocclusion effect, (2) it has to give preference

to the primary view away from the ROI, in order to help the user remain aware of

their position and orientation in the scene, (3) and it has to display the street-level

ROI where the user would see it in the absence of occluders, for the user to get an

accurate sense of where the ROI is located in the scene. We achieve the third goal by

”anchoring” the ground plane, i.e. by enforcing that the ground plane is not distorted

by the multiperspective visualization.
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We render the multiperspective image by transforming the scene vertices with a

three step operation. The results of the individual transformation steps are shown in

Fig. 3.6. The intermediate steps are only shown here for illustration purposes; in our

implementation, the vertices are projected directly from model space to the multiper-

spective image. In the first transformation step, a scene vertex u is transformed to

the local coordinates v1 and v2 of the primary and secondary perspectives by multi-

plication with their respective transformation matrices V1 and V2. All matrices and

vectors are in standard homogeneous coordinates.

v1 = V1 × u

v2 = V2 × u (3.1)

The second step anchors the transformed vertex in the secondary perspective to the

ground plane in the primary perspective by offsetting v2 by a displacement vector d.

v′2 = v2 + d

= v2 + (V1 × uground −V2 × uground) (3.2)

The 3D point uground is the ground plane projection of scene vertex u. For any vertex

u on the ground plane where u = uground, the transformed vertex v′2 is equivalent to

transforming u with V1, ignoring V2, and Eq. 3.2 becomes

v′2 = v2 + d

= V2 × uground + (V1 × uground −V2 × uground)

= V1 × uground

= V1 × u = v1 (3.3)

Thus the resulting multiperspective image shows the ground plane the same way the

primary perspective does.
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Fig. 3.5.: The amount of screen space taken up by the secondary perspective image
depends on the width σ of the Gaussian G. Left: σ = 0.8; right: σ = 0.4

In the third and final step, the transformation of the vertex u is finalized as a blend

between the anchored transformation and the the primary perspective transformation.

v = G(r, σ)v′2 + (1−G(r, σ))v1 (3.4)

The blend weights are given by a Gaussian G centered at the center of the sec-

ondary perspective image. The distance r is computed in the secondary perspective

image as the distance between the center of the image and the projection of the vertex.

The root-mean-square width σ is set according to the application (Fig. 3.5). Once the

vertex is transformed with Eq. 3.4, the transformed vertex is then multiplied with a

conventional projection matrix, that is the same for both the primary and secondary

perspectives.

In the case of multiple ROIs, each ROI defines its own focus point and secondary

perspective. Eq. 3.4 is modified such that the secondary perspectives are first inte-

grated with one another (Eq. 3.5), and then the result is integrated with the primary

perspective (Eq. 3.6).

v̄ =

∑
i>1 G(ri, σ)v′i∑
i>1 G(ri, σ)

(3.5)

v = Gmaxv̄ + (1−Gmax)v1 (3.6)
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v′i is the vertex transformed according to secondary perspective i, and ri is the

screen space distance to the center of the image of secondary perspective i. Gmax is

the largest of the weights G(ri, σ). This gives preference to the secondary perspective

transformation over the primary perspective transformation if a vertex is close to the

center of any of the multiple ROIs. Consider a case with 3 ROIs. A vertex at the center

of the first ROI and peripheral to the other two ROIs, i.e. which has transformation

weights approximately equal to (1, 0, 0), should be transformed according to the

secondary perspective of the first ROI. Using the average of the weights G(ri, σ) in

Eq. 3.6 would incorrectly give the first ROI transformation only a 33% weight.

The multiple secondary perspectives do not have to be disjoint. In the case when

two dynamic ROIs become close or coincident, their respective secondary viewpoints

also become close or coincident while sharing the identical downward view direction.

Therefore, as two ROIs approach each other, their associated secondary perspectives

smoothly converge, and the multiperspective visualization remains continuous.

3.3.3 Stereoscopic rendering

The HMD conveys depth cues through a stereoscopic image rendered from the left

and the right eye viewpoints, separated by the interpupillary distance. To support

stereoscopic rendering in our multiperspective visualization, each vertex v in the

coordinates of the monocular primary perspective is transformed to the coordinates

of the left and the right perspectives, vL and vR.

vL = VLV−11 × v

vR = VRV−11 × v, (3.7)

where VL and VR are transformation matrices of the left and the right perspectives.

The resulting multiperspective visualization has the correct disparity over the primary

and secondary perspectives, conveying appropriate depth cues to the user.
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(a) Primary perspective (b) Secondary perspective

(c) Anchored secondary perspective (d) Integrated perspectives

Fig. 3.6.: Illustration of the multiperspective transformation. Both the primary (a)
and secondary (b) perspectives are centered on the ground plane focus point, which
is occluded in the primary perspective and disoccluded in the secondary perspective.
The secondary perspective is first modified (c) for the ground plane to appear the
same way it would appear in the primary perspective in the absence of occlusions.

The final multiperspective image (d) transitions smoothly from the primary
perspective, at the periphery, to the secondary perspective, at the center.



60

3.4 Multiperspective indoor AR visualization

Efficiency of exploration of a real-world indoor scene is limited by the tight turns

at corridor intersections. In order to inspect the side corridors, the user has to walk to

each intersection. Our AR multiperspective visualization leverages additional views

of the corridors acquired by cameras placed at the intersections to present a compre-

hensive visualization to the user, who can see down a side corridor without having to

walk up to the intersection. The secondary perspective down the corridor is seam-

lessly integrated with the user’s primary perspective. In this section, we first describe

the scene acquisition from additional perspectives. Then we describe the selection

and integration of secondary views tailored to the user’s current viewpoint.

3.4.1 Acquisition

Unlike in the case of VR synthetic scenes, the AR context requires capturing the

additional perspectives with physical cameras. Furthermore, the multiperspective

visualization requires rendering the additional perspectives from novel viewpoints, so

a 2D image is not sufficient, and a geometric model is needed. In the indoor context,

the building geometry (i.e. walls, ceiling, floors) is fixed and we model it with a simple

geometric model projectively texture mapped with a photograph. For the controlled

experiments described in this chapter, the content of the corridor is synthetic (i.e. we

use a conventional computer graphics model of the ghost seen in Fig. 3.1, bottom.

Dynamic real-world geometry is acquired with a RGBD camera, whose frames are

reprojected to the desired viewpoint as a cloud of 3D points with color (Fig. 3.3).

3.4.2 Selection and integration of the secondary view

When the user sees an intersection, the rectangular portals leading to side corridors

are highlighted with a red wireframe. If the user centers and holds the view on a

portal, a secondary perspective swings into place, revealing what is visible through
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the portal (Fig. 3.1, bottom). The deviation from the conventional view of the scene

is confined to the area of the portal. The portal frame acts like a hinge connecting

the primary and secondary perspectives with C0 continuity.

When a portal is activated, the scene geometry beyond that portal is visualized

by rotating the scene vertices into view. Vertex transformation proceeds similarly

to that of VR visualization, where the first step is to transform each scene vertex

to coordinates of the primary and secondary perspectives, and the second step is

to anchor the geometry to the portal plane for the primary perspective (Fig. 3.7).

However, there is no need for blending between secondary and primary perspectives

because they integrate at the boundary of the portal.

We wish to restrict virtual scene distortion to the 2D horizontal plane, so the

primary and secondary perspectives are first restricted to be horizontal and at the

same height. This restriction is relaxed at the final step of the rendering pipeline,

where the full unrestricted primary perspective is used for rendering the final image.

In the first step, the primary perspective is constructed with the viewpoint at

the position of the HMD, and the view direction is towards the center of the portal.

Each scene vertex u beyond the portal plane is transformed to both the primary and

secondary perspectives using their respective transformation matrices, V1 and V2.

v1 = V1 × u

v2 = V2 × u (3.8)

The second step anchors the vertex v2 in the coordinates of the secondary per-

spective to the portal plane by offsetting v2 by a displacement vector d.

v′2 = v2 + d

= v2 + (V1 × uportal −V2 × uportal), (3.9)

where uportal is the projection of vertex u to the plane of the portal.
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(a) Un-deformed geometry (b) Step 1: Transforming to primary and sec-
ondary perspectives

(c) Step 2: Anchoring to to portal plane (d) Deformed geometry

Fig. 3.7.: (a): the un-deformed geometry, where the target is occluded along with
the shadowed parts of the corridor, although they are visible from the secondary

viewpoint. (b): the geometry in coordinates of both primary and secondary
perspectives. (c): the geometry anchored to the portal plane. (d): the deformed

geometry, where the target and all of the corridor become visible from the primary
viewpoint. The depth beyond the portal is preserved for each vertex.
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For any vertex u on the portal plane where u = uportal, the transformed vertex v′2

is identical to v1, and Eq. 3.9 becomes

v′2 = v2 + d

= V2 × uportal + (V1 × uportal −V2 × uportal)

= V1 × uportal

= V1 × u = v1 (3.10)

Thus the resulting multiperspective image shows the portal plane without any defor-

mation, and the secondary perspective is anchored to the primary perspective on the

portal plane.

A deformed side corridor is shown in Fig. 3.7. The target, represented by a red

circle, is occluded from the primary perspective, but is visible from the secondary

perspective. The target becomes visible when the scene geometry is deformed such

that the corridor beyond the portal is aligned with the primary perspective. Fig. 3.1

(right) shows the rendered AR result.

Multiple secondary perspectives can be active simultaneously. Geometry visible

through each portal is deformed separately according to each secondary perspective.

No blending between secondary perspectives is necessary because the portals are

disjoint, and the visualization of the deformed geometry is confined to the area of the

portals.

With modified scene geometry, stereoscopic rendering proceeds straightforwardly

by projecting scene vertices separately to the left and the right eye coordinates using

their respective transformation matrices VL and VR, as described in Section 3.3.3.

3.5 User study

We have conducted a controlled randomized user study to evaluate the effective-

ness of our VR and AR multiperspective visualization methods. In this first study we
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evaluate our method against conventional planar pinhole camera visualization, which

is used in the overwhelming majority of VR and AR applications. We implemented

our visualization methods for the urban VR and indoor AR scenes using an HMD

with SLAM user tracking (i.e. the Microsoft HoloLens). The urban VR scene is

a photo-textured model of Manhattan that is mapped to an empty floor space of

4m × 5m (Fig. 3.1, top). The indoor AR scene covers a 10m × 15m section of the

floor plan of our office building (Fig. 3.1, bottom).

3.5.1 Subjects

We recruited a total of 16 subjects for our study, 12 male and 4 female. The

subjects were undergraduate and graduate students between the age of 19 and 42.

The subjects were randomly assigned to equal-sized control and experimental groups

of 8 subjects each. The subjects assigned to the control group used a conventional

visualization that showed only the primary perspective. The other subjects, assigned

to the experimental group, used the multiperspective visualization. Each subject

performed all four tasks directly, without training and without familiarization with

the multiperspective visualization and with the user interface. The control group

subjects wore the HMD even for the AR tasks, when the portals were highlighted

with the red wireframe, but without the additional perspectives. In addition to age,

the demographic information collected from the subjects also covered prior AR and

VR experience. From the 16 subjects, 8 had prior experience with VR applications,

and 6 had prior experience with AR applications.

3.5.2 Tasks and data collection

Each subject performed four tasks. Two of the tasks are performed in the urban

VR scene, and the other two are performed in the indoor AR scene. The tasks require

subjects to gain and maintain sight of static and dynamic synthetic objects placed in

the scenes. The control and experiment configurations of the tasks are identical except
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for the visualization method employed. The user’s head position and orientation are

tracked and saved for data analysis.

Target tracking task (VR1) In the first urban VR task the subject is asked to keep

a target in view as the target moves on the streets of the city. The target moves for

38s, after which the task is complete.

Pair matching task (VR2) In the second urban VR task the subject is asked to

find pairs of spheres with the same color pattern. There are six pairs of spheres

placed at street level and scattered throughout the scene. The subject selects a

sphere by centering the view on it and by clicking a hand-held wireless mouse. In the

experimental group, the selected sphere is marked as a ROI and is kept disoccluded

even when the subject changes focus. The subject clicks are recorded for analysis of

the rate of matching error. When two matching spheres are selected, the spheres are

removed from the scene, and the task is completed when no sphere remains.

Search task (AR1) In the first AR task, the subject is asked to explore the corri-

dors of the scene in search of stationary targets, implemented as computer graphics

”ghosts” (Fig. 3.1.) Only one target is available at one time. A target is found and

removed when the user moves within 2m of it. Once a target is found, the next target

is placed in the scene, which forces the user to revisit the scene in search of the new

target. The task is completed after four targets are found. The target locations are

the same for the control and experiment conditions.

Ambush task (AR2) The second AR task is similar to the first one, except that

now the targets move. When the subject is in the direct line of sight of the target,

the target moves away from the subject. This requires the subject to ”ambush” the

target, by waiting around a corner for a target to move into the intersection where

it is ”captured”. The targets move with the speed of 1.2m/s, so the subject can also

run after the evading target to catch up with it. When a target is captured, the next

target is spawned in a part of the scene far away from the current position of the

subject. The subject is informed of the target’s evasive motion strategy, but is not

advised of a counter strategy.
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3.5.3 Results and discussion

We analyze scene navigation performance using several metrics extracted from the

subject pose traces recorded during our experiments. We detect and measure bene-

fits of the multiperspective visualization compared to the conventional visualization

in two ways: using Cohen’s effect size d [67], and using a two-sample t-test. Co-

hen’s d is calculated from measurements performed on the control and experimental

groups, and its value is the difference between the mean values divided by the pooled

standard deviation. Effect sizes are conventionally qualified as ”small”, ”medium”,

and ”large” for the cases where d > 0.2, d > 0.5, and d > 0.8 respectively. Due to

the variation of effect sizes observed in our metrics, the qualifiers for effect sizes are

expanded to include ”very small”, ”very large”, and ”huge” for d < 0.01, d > 1.2, and

d > 2.0 respectively [68]. We investigate the statistical significance of the measured

improvements using a two-sample t-test, reporting the probability p (i.e. p-value) for

the measured improvements to be due to chance. We first discuss metrics used for all

four tasks, and then we discuss metrics specific to individual tasks.

Viewpoint translation

One metric common to all tasks is subject viewpoint translation. Our visualization

brings in additional perspectives that are invoked and examined with intuitive head

motions and without requiring locomotion to assume their corresponding viewpoints.

Therefore, for all tasks, we expect a reduction in the total distance traveled by the

subjects in the experimental group compared to those in the control group. As

shown in Table 3.1, the total distance traveled by the subjects in the experimental

group is significantly shorter. For example, for the VR1 task, 68% of the control

group subjects traveled between 13.7m− 3.4m and 13.7m+ 3.4m (i.e. one standard

deviation). The difference between the averages is 8.3m, and Cohen’s d is 2.3, which

corresponds to a huge effect size. The largest benefit of multiperspective visualization

is measured for task VR2, where the experimental group subjects learned how to
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Table 3.1.: Average distance traveled per subject, in meters.

task control experiment difference p d effect size
VR1 13.7± 3.4 5.4± 3.8 8.3 < 0.01 2.3 huge
VR2 91.7± 47.0 8.2± 7.3 83.4 < 0.01 2.5 huge
AR1 99.1± 3.0 84.8± 12.3 14.4 < 0.01 1.6 very large
AR2 109.3± 16.9 93.3± 17.6 16.0 0.04 0.9 large

search for targets by staying in place, and where the control group subjects move

repeatedly back and forth as they forget the colors of the targets. The smallest,

but still large, benefit of multiperspective visualization is measured for task AR2,

where the targets are spawned as far away as possible from the subject. For the

VR tasks, the improvement brought by multiperspective visualization is statistically

significant with p-values below 0.01. Due to the variable nature of target spawn

locations, measurements for task AR2 also suffer slightly lower statistical significance

(p-value of 0.04). Overall, the large effect sizes measured for this and other metrics

(Tables 3.2, 3.3, and 3.4) justify the number of subjects used in the control and

experimental groups, i.e. eight and eight.

Fig. 3.8 shows the actual trajectories of the control and experimental group sub-

jects who moved the least while completing the urban VR tasks. The control group

subject covers a significant part of the scene, whereas the experimental group subject

stays within 0.2m of the starting position.

View direction rotation

The second metric common to all tasks is subject view direction rotation. The

multiperspective visualization performs automatically most of the view direction rota-

tion needed for the user to gain line of sight to the target. Therefore, for all tasks, we

also expect a reduction in the total view direction rotation performed by the subjects

in the experimental group. As shown in Table 3.2, the subjects in the experimental

group rotated their view direction significantly less. All p-values are less than 0.05.
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Fig. 3.8.: User viewpoint 2D trajectory visualizations for the urban VR tracking
(top) and pair matching (bottom) tasks. When using a conventional visualization

(left), the user moves over considerable distances. When using the multiperspective
visualization (right), the user can complete the task by standing in one place.
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Table 3.2.: Total head rotation, in hundreds of degrees.

task control experiment difference p d effect size
VR1 7.8± 1.3 4.4± 2.4 3.3 < 0.01 1.8 very large
VR2 66.0± 22.5 10.0± 4.8 56.0 < 0.01 3.4 huge
AR1 41.6± 6.9 32.8± 10.8 8.7 0.04 1.0 large
AR2 43.9± 8.7 33.7± 6.8 10.1 0.01 1.3 very large
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Table 3.3.: Average head downward rotation, in degrees.

task control experiment difference p d effect size
VR1 57.9± 14.3 40.9± 14.2 17.0 0.02 1.2 very large
VR2 48.5± 4.1 28.4± 5.2 20.0 < 0.01 4.3 huge

For the target tracking (VR1) and pair matching (VR2) tasks, where subjects

tilt their head downwards to look at targets at street level, we analyzed the aver-

age downward head rotation (Table 3.3). The subjects in the experimental group

required significantly less downward head rotation (p < 0.02), which is an important

improvement. When the subject looks down close their feet, the HMD’s limited field

of view covers only a small part of the scene, which requires moving a lot to search

for and to track the target. In addition, seeing only a small part of the scene reduces

spatial awareness, which further complicates the tasks. When the view direction is

less tilted, the scene is farther away and more of it is visible, which improves task

completion efficiency. Finally, viewing the scene with a downward titled view di-

rection is uncomfortable since it leads to an imbalanced distribution of the HMD’s

weight, as spontaneously reported by two of the subjects.

Task completion time

Table 3.4 gives completion times for the tasks, with the exception of VR1 where

the task is complete at the end of the fixed 38 second target trajectory. In the pair

matching task (VR2), subjects complete the task in significantly shorter time in the

experimental group (p < 0.01). This is expected because the subject is able to si-

multaneously examine two spheres, when one of them is marked as ROI and kept

disoccluded, and the other is found and disoccluded by focusing the view on it. In

contrast, the subject in the control group is only able to examine the spheres sequen-

tially, with significant physical motion in between. In the search task (AR1), the

subject in the experimental group benefits from the multiperspective visualization

which shows multiple additional perspectives simultaneously without requiring phys-
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Table 3.4.: Task completion time, in seconds.

task control experiment difference p d effect size
VR2 215.5± 86.4 57.8± 26.5 157.7 < 0.01 2.5 huge
AR1 91.5± 8.0 69.0± 19.5 22.5 < 0.01 1.5 very large
AR2 75.1± 24.9 73.6± 19.3 1.5 0.45 0.1 very small

ical locomotion, while the subject in the control group must translate their viewpoint

physically, and is only able to examine side corridors sequentially. Therefore, task

AR1 is performed significantly faster in the experimental group than in the control

group (p = 0.01). In the ambush task (AR2), however, subjects in the experiment

and control groups take about the same time to complete the task. The subject in the

experimental group is able to leverage the multiperspective visualization to quickly

locate the mobile target, but may choose to spend time to wait to ambush. This

strategy results in overall less physical locomotion for the experimental group, but

not in faster task completion.

Task-dependent metrics

For the target tracking task (VR1), we measured for what percentage of the time

the subject succeeded at keeping the target in sight. The target sphere is considered

visible if any part of it is in the subject’s view. In the experimental group, the subjects

achieved 97.5% of target visibility compared to the control group, which achieved only

74.1% of target visibility. In other words, even by walking continually, the subject

cannot always keep the target in sight. When the target makes a turn, the user has

to translate significantly to realign with the street on which the target moves, which

takes time. The improvement is 23.3 percentage points with a Cohen’s d of 1.4, which

corresponds to a very large effect size. This effect is statistically significant (p = 0.01).

For the pair matching task (VR2), the subject is asked to select two spheres of the

same color in succession. If the second sphere selected is of a different color, then this

pair of selections is considered a matching error. The subjects in the experimental
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group incurred 1.6 erroneous selections on average, while the subjects in the control

group incurred a higher rate of 2.5 erroneous selections on average. The improve-

ment is 0.9 selections with a Cohen’s d of 0.4, a small effect size. The effect is not

statistically significant (p = 0.22).

Effect of subject prior AR/VR experience on task performance

Due to the absence of familiarization periods allowed before each task, the sub-

jects’ prior experiences with VR and AR applications were analyzed for any possible

effect on task performance. From the eight subjects with prior VR experience, four

were assigned to the control group and four to the experiment group, for each of

the tasks VR1 and VR2. For AR1, from the six subjects with prior AR experience,

two were assigned to the control group and four were assigned to the experiment

group. For AR2, three of the AR experienced subjects were assigned to each of the

two groups. Overall, there were no consistent differences between subjects with and

without prior experience within single groups, and any difference found was statisti-

cally insignificant. Due to the small number of subjects with experience in a group,

a dedicated user study is needed to investigate fully the effect of prior experiences

when using our visualization methods.

3.6 Conclusions and future work

We have presented novel multiperspective visualizations to improve navigation ef-

ficiency in AR and VR. Our visualization techniques seamlessly integrate perspectives

from multiple secondary viewpoints into the main user perspective. The secondary

perspectives are selected by the user intuitively, with minimal or no interface ma-

nipulation. The output supports stereoscopic displays by rendering the scene with

correct depth cues. We demonstrate the effectiveness of our visualization techniques

in a user study where subjects were asked to accomplish tasks in AR and VR using

an HMD with tracked pose. Based on the study, we report significant improvement in
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navigation efficiency while using multiperspective visualization compared with using

conventional visualization.

There exist limitations to our visualization techniques. The urban VR visual-

ization assumes that any ROI at street level can be disoccluded from an overhead

perspective. This assumption does not hold, for example, when the target object

hides underneath a bridge. It is possible to include additional panning control to the

construction of secondary views, but this increases the complexity of the user inter-

face. If the target is unreachable, e.g., it hides inside an enclosed space, then even the

addition of panning control cannot bring it into view, and we must resort to X-ray or

cutaway visualizations. The indoor AR visualization seamlessly swings side corridors

into view, but the deformation operation can only guarantee continuity between real

and virtual scene parts joined at a planar portal. Supporting non-planar portals is

possible at the cost of visual complexity.

Fig. 3.9 compares our multiperspective visualization approach to handling occlu-

sions to X-ray visualization, for both the urban VR and the indoor AR scenes. For

the VR scene, the X-ray visualization does not convey the location of the target (red

sphere) with respect to the network of streets. The multiperspective visualization

anchors the target at the correct street location, and, unlike a simple overhead view,

does also convey the height of the nearby buildings. For the AR scene, the X-ray

visualization covers a significant fraction of the nearby occluding wall with the side

corridor, which obscures parts of the scene close to the user. Our multiperspective

visualization does not blend mismatching colors, which maintains the clarity of the

visualization, and confines the depiction of the side corridor to the user’s view of

the portal. Overall, our visualization presents a different approach to the problem of

missing depth cues suffered by X-ray views.

Our user study relies on conventional visualization for the control group. The

user manages occlusions by physically navigating the viewpoint to locations from

where there is line of sight to potential ROIs. This first study provides a useful

baseline for our visualization approach. Future studies could attempt to compare
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Fig. 3.9.: Comparison between conventional (top row), X-ray (middle row), and
multiperspective (bottom row) VR (left) and AR (right) visualizations. The

street-level target (left) and the side corridor (right) are occluded in conventional
VR and AR visualizations. Unlike the multiperspective visualizations, the X-ray
visualizations do not convey the street-level location of the target and the nearby

geometry.
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with other approaches to enhance navigation, such as occlusion management based

on X-ray, cutaway, and explosion visualization. We foresee that some applications,

scenes, and tasks will be better served by one approach over another. Furthermore,

hybrid approaches should also be investigated.

Our approach to VR navigation has potential advantages in a multi-user environ-

ment. Unlike non-linear VR navigation techniques such as teleportation, redirected

walking, or non-linear mapping, our method strictly preserves mapping between phys-

ical and virtual spaces at unit scale for the main, user perspective. This opens up

possibility for multiple users to simultaneously collaborate in a shared VR scene.

Consider the urban VR scene visualized by multiple users. The same target can

be disoccluded simultaneously for all users with multiperspective visualizations tai-

lored to each individual user. Each multiperspective visualization shows the target at

the same undistorted location, which allows the multiple users to refer to the target

consistently.

Our work introduces a paradigm where the user receives visual assistance from

additional perspectives, without the disorienting effect of abandoning the main per-

spective. Our work does not advocate for supplanting all user physical locomotion

through the use of multiperspective visualization. Instead, our contribution is a flex-

ible framework where the user can choose how much to walk and how much to rely

on the multiperspective visualization. For example, in target tracking, some users

relied completely on the multiperspective visualization which all but eliminated the

need to walk, and some other users only relied on the multiperspective visualization

to simplify their walking trajectories, in order to succeed at keeping the target in

sight without having to walk fast and with abrupt turns. Inspired by the significant

reduction of physical locomotion for some users in the urban VR scene, future work

could study multiperspective visualization in VR or AR applications where the user

is seated or almost stationary. Such applications include navigation between multiple

virtual displays in a VR desktop, assisted surgical operations with multiperspective
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augmented annotations, or improved situation awareness during operation of machin-

ery or vehicles.

In the indoor scene, the multiperspective visualization shows what is visible be-

yond the first turn, and the user still has to walk to be at most one turn away from

the target. Future work could examine extending the multiperspective visualization

to show what is visible beyond the second and third turns away from the current user

position, which will undoubtedly come at the cost of increased visualization complex-

ity. Future studies are needed that will leverage the flexibility of our multiperspective

rendering framework to investigate the optimal trade off between multiperspective

disocclusion power and visualization eloquence.

c© 2018 IEEE. Reprinted, with permission, from Meng-Lin Wu and Voicu Popescu, Efficient VR
and AR Navigation Through Multiperspective Occlusion Management, Visualization and Computer
Graphics, IEEE Transactions on, Dec. 2018.
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4. ANCHORED MULTIPERSPECTIVE VISUALIZATION

FOR EFFICIENT VR NAVIGATION

4.1 Introduction

In VR applications, a HMD tracked with six degrees of freedom supports using real

walking for natural navigation, where there is an identity mapping between the user’s

physical and virtual motion. The user selects the desired view intuitively, by walking

to translate the viewpoint, and by rotating their head to change view direction.

However, real walking navigation presents several challenges. One challenge is the

fact that the real world space hosting the VR application is typically smaller and

of a different shape compared to the virtual space, which can prevent the user from

reaching some desired viewpoints. For example, a desired viewpoint might coincide

with real-world furniture, it might be beyond the walls of the real world room, or it

might be high up, on a higher level of a multistory virtual world that is hard to reach.

Another challenge is that in complex virtual world scenes occlusions limit how

much the user can see from any given viewpoint. Comprehensive exploration requires

translating the viewpoint to circumvent occluders and to gain line of sight to all

potential ROIs. When a potential ROI turns out to be of no interest, the user has to

retrace their path and to explore the next one. Such sequential scene exploration is

inefficient. Furthermore, when scene understanding depends on seeing several ROIs

simultaneously, or on visualizing dynamic, possibly evading targets, sequential scene

exploration is ineffective.

Another reason why real walking might not always be desirable is based on er-

gonomics considerations. For some applications, the user might prefer not to expend

the energy needed to navigate the VR world by always walking and rotating their

head in the real world. In other words, for applications where the experience of actual
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physical locomotion is not essential, users might prefer navigation interface constructs

that allow them to see more with less physical effort in a shorter amount of time.

Many approaches have been investigated for overcoming these challenges of using

real walking for navigation in VR. One promising approach is based on MPV, which

relies on images that integrate samples captured from multiple viewpoints. Consider

a virtual scene with two corridors intersecting at a right angle. Using a conventional

visualization, a user has to translate the viewpoint up to the intersection to examine

the side corridors in search of an ROI. If, on the other hand, an MPV shows not

only the main corridor but also the side corridors, the user can examine the side

corridors from their current location, which avoids the unnecessary navigation to the

intersection when the side corridors turn out to be empty. Similarly, MPV can let

the user see distant parts of the scene, without having to move beyond the walls

of the real world space hosting the VR application. An MPV can also let the user

examine two potential ROIs simultaneously, in parallel, even when no conventional

visualization can show both ROIs at the same time.

Harvesting these potential advantages of MPV in the context of VR navigation

requires solving two problems: (1) to design an MPV that is effective, i.e. that has the

high information payload needed for navigation efficiency, but that remains easy to

interpret by the user, and that does not induce user disorientation or motion sickness;

(2) to devise navigation interface elements that allow the user to invoke their MPV

superpower intuitively, in order to benefit from the additional perspective quickly and

to the fullest extent.

In this chapter we present anchored multiperspective visualization, a novel multi-

perspective visualization method designed to improve VR navigation efficiency. Our

method was designed based on the following principles: (1) the MPV image should be

continuous and non-redundant; (2) the MPV should show the near part of the scene

with a conventional first-person visualization controlled through natural motion, an-

choring the user; and (3) the MPV effect should be controlled with user motions
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reminiscent of natural motion, by tethering the secondary perspective selection to

the user’s head rotations and translations.

We have designed three types of anchored MPV. The first type allows the user to

achieve a lateral disocclusion effect (Fig. 4.1, top) The user cannot see down the right

side corridor with a conventional visualization (left). The MPV (right) integrates a

secondary perspective into the main user’s perspective, allowing the user to see down

the right side corridor. The secondary perspective is controlled by the user translating

their head to the left as if to look around a corner. The small head translation is

amplified and applied to a secondary viewpoint that swings into place to reveal the

side corridor. The user view change is used directly, without amplification, to render

the nearby geometry, which remains in agreement with the user’s proprioception to

anchor the user.

The second type of anchored MPV allows the user to achieve a vertical disocclusion

effect (Fig. 4.1, bottom). The user cannot see on top of the ledge in a conventional

visualization (left). The MPV (right) integrates an additional perspective, with a

high up viewpoint, to reveal the object on the ledge. The secondary perspective is

controlled by the user by getting up on their tiptoes as if to examine a tall shelf above

eye level. The small vertical user viewpoint translation is amplified and applied to

a secondary viewpoint that translates up the necessary amount to see on top of the

ledge.

The third type of anchored MPV allows the user to teleport from one location to

another. MPV disoccludes parts of the scene not visible from the main user viewpoint,

but it does not and should not produce a visualization that shows the entire scene.

Consequently, the need to quickly move directly to a distant location of the scene

remains even in MPV navigation. We have designed an anchored MPV teleportation

method that proceeds in two stages, evocative of how a caterpillar moves (Fig. 4.2).

First, the secondary viewpoint moves forward, getting closer to the far part of the

scene, translating from the origin to the destination, while the primary viewpoint
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Fig. 4.1.: Top: lateral disocclusion effect. The side corridor is occluded in a
conventional visualization (left), and visible in our anchored MPV (right). The

disocclusion effect was deployed by the user with a small left translation of their
head. The MPV shows the near part of the scene conventionally, anchoring the user.
Bottom: vertical disocclusion effect. A conventional visualization does not show on
top of the ledge (left), whereas our anchored MPV does (right). The disocclusion

effect was deployed by the user with a small upward translation of their head
achieved by getting up on their tiptoes. The MPV shows the ledge and the walls in

front of the ledge conventionally, anchoring the user.
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Fig. 4.2.: Two-stage MPV teleportation concept. In the first stage (top two images),
the primary perspective stays locked on the origin, anchoring the user, while the

secondary perspective translates to the destination. In the second half (bottom two
images), the secondary perspective stays fixed, anchoring the user, while the

primary perspective moves to assume the secondary perspective.

doesn’t move, remaining at the origin. Second, the primary viewpoint moves forward

to the secondary viewpoint, while the secondary viewpoint doesn’t move.



82

We have conducted a user study to detect and quantify any VR navigation effi-

ciency benefits brought by our anchored MPV method. 16 participants were divided

evenly in a control group, who used conventional visualization, and an experiment

group, who used our anchored MPV. Each participant performed a searching task

and a matching task in each of two virtual environments: a single-story area of con-

nected rooms, and a larger room with walkways suspended from the periphery walls,

high above the room floor. For the first environment the experiment group par-

ticipants had available our lateral disocclusion anchored MPV, and for the second

environment they had available our vertical disocclusion anchored MPV. In all cases,

all participants had the ability to teleport to any scene location to which they had

line of sight. The experiment group used our MPV teleportation. The experiment

group performed significantly better than the control group in the first virtual envi-

ronment, achieving improvements in the metrics of distance traveled and number of

teleportations. Cohen’s d effect size of large and greater was observed with p-values

below 0.05. In the more complex second virtual environment, the experiment group

achieved improvements of medium Cohen’s d effect size at p-values of 0.1 and less.

Experiment group participants also reported improvements in spatial awareness and

perceived navigation efficiency.

In summary, we make the following contributions: (1) a set of principles for de-

signing VR navigation methods based on multiperspective visualization, (2) three

anchored multiperspective visualization based on our design principles, one for lat-

eral disocclusion, one for vertical disocclusion, and one for teleportation, and (3) a

user study confirming the potential of our anchored MPV to improve VR navigation

efficiency.

4.2 Prior Work

In VR, a preferred scene navigation modality is actual user locomotion in the

physical space, which is translated to matching view changes in the virtual world.
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However, the physical space typically differs considerably from the virtual space.

Due to this mismatch, some virtual viewpoints become inaccessible. In Section 4.2.1,

we discuss this challenge and prior work aimed at alleviating it. Another challenge

arises from the reduction in visualization efficiency due to occlusions of ROIs by

scene geometry, forcing the user to search for an unobstructed line of sight through

extensive viewpoint navigation. In Section 4.2.2 we review prior work for improving

VR navigation efficiency using the multiperspective occlusion management approach.

4.2.1 VR Navigation Challenges

The most intuitive VR navigation is an identity mapping between physical and

virtual motion [42,43]. One common problem is that the physical space is considerably

different than the virtual space. Usually the physical space is more restricted than

the virtual world.

To fully explore the virtual world, the real and virtual locomotion must purpose-

fully diverge to allow sufficient virtual motion while limiting physical motion. One

approach is teleportation, which allows the user to designate a destination in the vir-

tual world, and then to instantly relocate to that destination [69]. The visualization is

discontinuous as the user changes location instantaneously, without any indication of

the position of the destination relative to the origin. Therefore, the user needs some

time to reorient themselves after arriving at the destination. A technique to reduce

this discontinuity is to translate the user from the origin to the destination along a

straight path [70]. However, a slow translation might cause nausea, as the user’s view-

point changes without any perceived acceleration, while a fast translation does not

resolve the visualization discontinuity issue. In practice, a visual ”blink”, i.e. fade-out

followed by fade-in, is applied as the viewpoint translates, to minimize nausea while

providing some visual connection between the origin and the destination [71].

Another approach is artificial, or free, locomotion, where the user relies on input

devices such as joysticks or keyboards to navigate the view beyond the tracked head
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pose. The divergence between virtual and physical motion is thus directly controlled

by user input. This method preserves visualization continuity, so spatial awareness

is not compromised. However, due to the detachment of the user’s virtual movement

from their physical movement, the artificial locomotion method induces more motion

sickness compared with teleportation-based methods [72]. Specifically, the visual and

physical senses of acceleration are out of sync. One technique for alleviating nausea

is to limit the user to discrete artificial locomotion steps, which are enacted abruptly

to break the sensation of artificial acceleration. However, larger steps impact spatial

awareness, while smaller steps incur frequent visual discontinuity [71].

Other approaches hide the mismatch between the physical and the virtual worlds

by deviating from the tracking data, for example by making the user cover long

straight lines in the virtual world by walking in circles in the physical world [44, 45],

by resetting user pose [48], and by modifying input gain [47, 73]. Another approach

is to distort the virtual world to pack it tightly in the limited confines of the physical

world [49]. An approach that blends physical and artificial locomotion is the treadmill

approach, or the smart platform approach, where the user actually walks, but without

covering large distances in the physical world [40]. The shortcomings of the approach

are confusing motion divergences, tethering the user, and reliance on expensive and

bulky hardware.

4.2.2 Multiperspective Visualization in VR

MPV is a class of visualization techniques that integrate multiple perspectives

into the main user perspective. MPV originated in the visual arts, e.g. Picasso’s

Cubism, and is applied to achieving comprehensive visualization, such as a ski trail

map showing simultaneously trails not all visible from a single viewpoint.

Earlier research work focused on relaxing the single center of projection constraint,

but the sampling rays remain linear [19,60,61]. More recent work introduced piecewise

linear or even curved sampling rays that provide the flexibility needed to go around
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occluders to reach distant ROIs [23,24,29]. While relaxation of the constraints opened

up more degrees of freedom in the camera model used to render the visualization,

the camera model generalization also created the need for automatic and interactive

constructors that provide the application with the desired disocclusion effect [1].

In VR occlusion management, MPV is also found to be an effective technique [2],

while conventional desktop occlusion management techniques such as transparency

and explosion visualizations face various challenges. Transparency techniques intro-

duce visual clutter that scale with scene complexity [52], whereas the MPV approach

does not introduce additional geometry and does not violate pictorial depth cues.

Explosion techniques disturb scene geometry [34], which impact the user’s spatial

awareness in VR, whereas the MPV approach does not disturb surface connectivity.

Portal-based visualization is a technique closely related to MPV. It composites

additional views of the scene within the main view in a picture-in-picture fashion [74].

In VR applications, it supports teleportation navigation where the user teleports to

destinations revealed through the portal [75]. However, the teleportation destination,

as viewed through the portal, is beyond the vista space [76]. The user is therefore

unable to trace the path of teleportation.

Our MPV method increases scene exploration efficiency by giving the user a pre-

view of ROIs that are occluded in a conventional visualization. Compared with

portal-based visualization, our MPV incorporates disoccluded ROIs into the vista

space, avoiding disorientation due to untraceable teleportation [77]. Compared with

the prior work in MPV navigation [2], our MPV supports both lateral and vertical

disocclusion. It provides more versatile and at the same time more intuitive ways of

controlling the additional perspectives, and it allows the user to assume seamlessly

any additional perspective revealed by MPV using teleportation. The user’s spa-

tial awareness is further increased by visually anchoring the user in the scene as the

additional perspectives are deployed and retracted, and during teleportation.
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4.3 Anchored Multiperspective Visualization

In this section, we first discuss in more detail our three principles for the design of

effective multiperspective visualization for VR navigation, and then we present our

three methods for anchored MPV.

4.3.1 Design Principles for Effective Multiperspective Visualization in

VR

(1) MPV image continuity and non-redundancy

This first principle encapsulates general concerns for achieving effective MPV,

irrespective of the VR context. An MPV has to be continuous, i.e. points that

are close in 3D should project to nearby image locations. This concern disqualifies

MPVs obtained through a discontinuous collage of individual perspectives, or through

parallel visualization with multiple disconnected rectangular images. An MPV also

has to be non-redundant, i.e. it should not show a part of the scene multiple times.

Continuity and non-redundancy are necessary conditions for obtaining an MPV that

can be parsed by the user without the disadvantage of a significant cognitive load,

which is particularly important in the VR navigation context.

(2) Primary perspective MPV anchoring

This second principle ensures that, as the conventional visualization morphs into

an MPV, and as the MPV parameters are changed interactively, there is always

a significant part of the image that is unaffected by the MPV effect, and that the

unaffected part of the image corresponds to the space surrounding the user. The user’s

visual system relies on this primary visualization of nearby geometry, in sync with

their own primary perspective, to remain in agreement with the motion perceived by

the user, and to dissociate from the distant parts of the scene that move incongruently

with the perceived motion, both of which contribute to preventing disorientation and

motion sickness.

(3) Natural secondary perspective navigation
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Fig. 4.3.: Lateral disocclusion through anchored MPV. A conventional visualization
from viewpoint u0 does not show the side corridor (left). A small left translation of

the head from u0 to u1 deploys a disocclusion effect that shows inside the side
corridor (right).

An MPV has a significantly higher number of degrees of freedom than a conven-

tional visualization, with each additional perspective introducing six more extrinsic

parameters. This third principle prohibits complex navigation interfaces that ask the

user to manipulate a high number of degrees of freedom individually, and mandates

allowing the user to control the secondary perspectives with natural motions similar

to the ones used to control the main user perspective in conventional VR.

4.3.2 Anchored MPV for Lateral Disocclusion

A frequently needed disocclusion effect is to see around an occluder, e.g. to see

around a tree, or to see through a side opening, e.g. through a window in a house

facade. Such a lateral disocclusion effect can be provided by integrating a secondary

perspective from a viewpoint that has line of sight around the tree or through the

window. We provide a lateral disocclusion effect as follows.

Given a virtual scene, we define a set of vertical rectangles in the scene to serve

as portals to guide the lateral disocclusion effect. The portals are defined where the

user is likely to benefit from disocclusion, e.g. at the doorways that connect various

sections of the scene, or between an occluder and nearby walls, such as a column in a
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middle of a room. The portals are not rendered, but when a user exploring the scene

with a VR HMD sees the geometry spanned by a portal, the geometry changes color

to indicate the availability of a disocclusion effect. The user activates the disocclusion

effect with a controller button. The activation itself does not change the visualization

to an MPV. After activation, lateral translations of the user’s head as recorded by

the HMD will deploy a secondary perspective that sees through the portal.

In Fig. 4.3 the user’s initial viewpoint is u0, looking at portal ab. In the conven-

tional visualization (left), the user cannot see deep inside the portal from u0. Once

the user activates the disocclusion effect of the portal, a subsequent left translation

of the user viewpoint rotates the geometry behind the portal plane about the pivot

point p, which is the center of the portal rectangle. The rotation gives the user line of

sight perpendicularly through the portal, e.g. swinging the side corridor wall vertices

c0, d0 to c1, d1, respectively (right). The rotation angle is proportional to the user’s

lateral head translation, and the gain is tuned such that a small amount of translation

u1u0 (e.g. 20cm) is sufficient to see down the portal. The small translation wouldn’t

have been sufficient to see down the portal with a conventional visualization, i.e. the

user would see only marginally more inside the portal from u1 as compared to u0

(left). The small translation is amplified by our lateral MPV disocclusion effect to

introduce the necessary second perspective on the geometry beyond the portal plane.

The rotation angle is capped to the value needed to the see down the portal.

Any geometry vertices or fragments that cross the portal plane when rotated are

discarded (i.e. they are not drawn), which does not create artifacts as this geometry

wouldn’t have been visible anyway due to the side corridor walls. Vertex projection

is continuous and non-redundant, which enforces the first design principle. Nearby

geometry, i.e. the part of the eb wall seen by the user, is drawn conventionally, from

the primary perspective, which anchors the user, enforcing the second principle. The

additional perspective is deployed by the user translating their head to the left, and

by slightly panning the view to the right in order to keep the portal in the center

of the image, which is the natural motion the user would make if they were close to
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Fig. 4.4.: Vertical disocclusion through anchored MPV. A conventional visualization
does not show on top of the ledge (left). The user tiptoes to generate a small

upward head translation from u0 to u1 that deploys a disocclusion effect that shows
on top of the ledge (right).

point b and wanted to look inside the portal, so the interface is in agreement with the

third principle.

4.3.3 Anchored MPV for Vertical Disocclusion

In addition to lateral disocclusion, an explorer of a 3D virtual scene might also

want to be able to see on top of horizontal surfaces that are suspended above the

user’s eye sight. Given a virtual scene, we define a set of ledge edges. Like in the case

of portals, when a VR explorer has a predefined ledge edge into view, a highlight alerts

them to the availability of a vertical disocclusion effect, and the user can activate the

effect with a controller button.

Fig. 4.4 shows the conventional visualization of a scene with a ledge (left) and

the same scene with our vertical disocclusion MPV effect (right). The initial user

viewpoint u0 is too low to see on the ledge. A small vertical translation of the user

viewpoint to u1 brings in an additional perspective that sees on the ledge. The

disocclusion effect is implemented as a rotation of the geometry beyond and above

the ledge, such that the new viewpoint u1 is above the ledge plane, disoccluding the

ledge. The viewpoint u1 wouldn’t have been high enough to disocclude the ledge in
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a conventional visualization (left). The small translation u0u1 is amplified to achieve

the vertical disocclusion effect.

Like in the case of lateral disocclusion, the vertex projection is continuous and

non-redundant, and the user’s view of the floor and of the ledge edge doesn’t change,

anchoring the user. Finally, the vertical up and down translation is controlled by the

user’s tracked HMD, who gets up on their tiptoes up to see atop the ledge, and back

down to revert to a conventional visualization.

4.3.4 Anchored MPV for Teleportation

We allow the user to teleport between an origin and a destination viewpoint, as

needed to change floors, rooms, and, in general, to overcome the constraints of the

real world and of the tracking system. Teleportation is a rapid transition between the

two viewpoints, which can induce user motion sickness because the user moves, i.e.

”flies”, without actually engaging in locomotion. Prior work suggests that the safest

teleportation is a very abrupt one, but that is also the teleportation that disorients

the user the most.

We have developed a teleportation that aims to alleviate these disadvantages. The

user selects the destination with the cursor, which is always placed at the intersection

between the view direction and the scene geometry. Therefore, the destination is

selected with the HMD by changing view direction. The destination viewpoint is the

point on the vertical through the cursor that is at the user’s height above the ground.

If this initial destination viewpoint is too close to a wall, the destination viewpoint

is pulled back away from the wall to provide a meaningful view once teleportation is

complete. The user triggers teleportation with a controller button.

Our anchored teleportation method is illustrated in Fig. 4.5. The origin and

destination viewpoints are o and d. During the first phase (i.e. transition from left

to middle in Fig. 4.5), the far perspective is brought closer, by translating the scene

geometry beyond the cutting plane with vector od. The cutting plane is positioned
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Fig. 4.5.: Anchored MPV teleportation. The viewpoint moves from o to d in two
phases: first the part of the scene beyond the cutting plane is brought down,

anchoring the user with the near part of the scene (green, from left to middle), and
then the cutting plane is brought down, anchoring the user with the far part of the

scene (red, from middle to right)
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between the two viewpoints, splitting the distance between them at a fixed ratio.

This first phase brings the far part of the scene closer, to be as close as it will be

when the viewpoint is at d, but without pushing away the near part of the scene.

The visualization of the near part of the scene (green) remains unchanged, which

anchors the first phase of the teleportation. During the second phase, the cut plane

is translated along the vector do, which makes the nearby geometry disappear from

view. The visualization of the far part of the scene (red) remains unchanged in this

second phase, which maintains uninterrupted anchoring.

Fig. 4.5 illustrates teleportation along a straight line, but the same procedure is

followed if the user chooses to teleport using a lateral or vertical disocclusion MPV.

The only difference is that once the second phase is complete, any residual distortion

of geometry is gradually eliminated. Geometry is distorted only close to the portal

or ledge planes, and typically the user desires to teleport deeply through the portal

or beyond the ledge, so the geometry is undistorted off screen. Fig. 4.2, left, shows

frames from a ”straight line” teleportation. Fig. 4.2, right, illustrates teleportation

into a side corridor, starting from the lateral disocclusion effect.

4.4 User Study

In order to evaluate the effect of our multiperspective visualization technique on

VR navigation efficiency, we conducted a randomized user study, with the approval

of our Institutional Review Board. Each participant performed three tasks in VR,

and their actions were logged for subsequent analysis. After task completion, the

users responded to a questionnaire that provided their subjective evaluation of task

performance.

The participant wore a VR HMD (i.e. Windows Mixed Reality headset [78]).

The VR HMD performs six degree of freedom SLAM-based tracking of the pose of

the participant’s head. In addition, the participant used a motion-tracked hand-

held controller to enable interactions with the virtual world through actions such as
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pointing and clicking buttons. The HMD displays stereoscopic image pairs rendered

from viewpoints offset by the interpupillary distance to provide stereoscopic depth

perception.

4.4.1 Participants

A total of 16 participants (14 male) completed our study. The participants were

graduate students of ages between 23 and 37. They were randomly assigned to ex-

periment and control groups of 8 participants each. Participants in the control group

performed all tasks using only conventional, single-perspective visualization, while the

participants in the experiment group performed all tasks using our anchored MPV.

The between-group design was chosen over the within-subject design to avoid any

learning effect when repeating tasks from one condition to the next. Another rea-

son is to mitigate the fatigue factor that can affect performance in extended task

performance in VR environments–with the between-group design a participant’s in-

volvement time is reduced in half. However, the effect of prolonged usage of MPV

navigation is an important avenue for future research, which is discussed further in

Section 4.5.

4.4.2 Tasks and Evaluation

The participants performed tasks that required extensive virtual locomotion in

two VR scenes using environments adapted from the Quake 3 Arena [79]. The first

VR scene (Scene 1) is a single-story indoors area consisting of a set of rooms connected

by corridors (Fig. 4.6, left). Two of the rooms contain cylindrical pillars in the center,

which partially occlude the interior of the rooms regardless of the participant’s current

viewpoint. The second VR scene (Scene 2) is a large 3-story building where the center

is an inaccessible tower, while the levels are connected by walkways attached to the

perimeter walls (Fig. 4.6, right).
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Fig. 4.6.: VR scenes used in the user study. Left: Scene 1 is a set of rooms connected
by corridors. Right: Scene 2 is a 3-story building with multi-level walkways.
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Each participant was required to perform 3 tasks: two search tasks, each in a

different VR scene, and one pair matching task. Before beginning each task, the

participant completed a short warm-up exercise which is similar to the actual task,

but differs in content and is much shorter. This warm-up period ensured that the

participant correctly operated the HMD and the hand-held controller, and that the

test procedures were clear. Participants received no other training beyond this warm-

up period.

The participant’s performance was evaluated from recorded data using objective

metrics, which were unknown to the participants. During the performance of each

task, the participant’s tracked physical HMD pose was logged, along with any inter-

action events such as initiating teleportation, acquiring a target object, or matching

a pair of target objects. The logs were processed to extract metrics of interest. Ad-

ditionally, each participant was asked to respond to a questionnaire after completion

of the tasks. The questionnaire recorded subjective evaluation of performance and

comfort.

4.4.3 User Interface for Locomotion and Anchored MPV

In both Scene 1 and Scene 2, the user was free to employ real walking by moving

within a 2m by 2m physical space. To navigate beyond the limits of the physical

space, the user employed teleportation. The user pointed the hand-held controller

at the intended destination, and then clicked the controller button to initiate the

teleportation. (Fig. 4.7, left). In Scene 2, the user could additionally access higher

floor walkways by designating the walkway edges as a teleportation destination. As

the user points the hand-held controller at a walkway edge, the edge is highlighted to

indicate that the edge is a valid destination (Fig. 4.7, right). The user can also select

any visible lower floor surface. As the controller button is clicked, the virtual view-

point is teleported to the destination. The teleportation is not completed instantly,

but the virtual viewpoint is translated to the destination at a fast 40m/s straight
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Fig. 4.7.: The user selects the teleportation destination using a hand-held controller.
Left: In both VR scenes, the user teleports by pointing a ”laser” beam at the

destination and clicking using the controller. Right: In the second VR scene, the
walkway edges that are eligible as teleportation destinations are highlighted in blue

when swiped with the laser beam.
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line velocity. During the translation, participants in the control group experienced

the conventional ”blink” visual effect, whereas participants in the experiment group

experienced the anchored MPV teleportation described in Section 4.3.4.

Our lateral disocclusion anchored MPV (Fig. 4.1, top) was accessible to experi-

ment group participants performing tasks in Scene 1. The anchored MPV is activated

automatically as the user gazes at virtual portals defined by corridor archways or con-

necting cylindrical pillars to side walls. The available archways and pillars in Scene

1 are predetermined prior to the study. Once the MPV is activated, the user moves

laterally in small amounts to rotate the secondary perspective horizontally.

Our vertical disocclusion anchored MPV (Fig. 4.1, bottom) was accessible to ex-

periment group participants performing tasks in Scene 2. The vertical disocclusion

anchored MPV is manually activated. First, the user designates a walkway edge on

a different floor by pointing with the hand-held controller and holding down the but-

ton. Then, with the button held, the user tiptoes or crouches a small amount to

raise or lower the secondary viewpoint. Due to the need to hold down the button for

activating the anchored MPV, the user of the MPV is required to double-click the

controller button in order to initiate teleportation in Scene 2. Any new area revealed

by the anchored MPV is also a valid destination for teleportation.

Search Tasks (Search 1 and Search 2) The search tasks Search 1 and Search 2 were

performed in Scene 1 and Scene 2 respectively. In both search tasks, the participant

was asked to find target objects in the form of gold coins placed in the VR scene.

There were 6 coins that appeared one after another. Their locations were unknown

to the participant, but were identical for all participants. A coin disappeared once it

was found and collected by the participant by getting within 1m of the coin, either

through real walking or through teleportation. An audio cue was triggered at the

collection of a coin to notify the participant. The task was complete when all coins

are collected.

Pair Matching Tasks (Match) The pair matching task (Match) was performed in

Scene 1. In this task, the participant was asked to identify target objects in the form
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of colorful mushrooms, of identical color pattern. There were 8 objects in 4 distinct

color patterns, whose placement was identical for all participants. The participant

first pointed to one visible target object and selected it by clicking a button. When the

participant clicked on the second object of identical pattern, the pair was considered

matched and it disappeared from the scene, with an audio cue, The task was complete

when no targets remained.

Post-Performance Questionnaire Each participant was asked to respond to a ques-

tionnaire after completing the three tasks. The purpose of the questionnaire was to

evaluate the participant’s perception of their own performance and of of our MPV

technique. The participant responded to each of three statements ”You always felt

present in the virtual world”, ”Your spatial awareness was maintained while moving

around”, and ”You could reach any intended destination efficiently”, by choosing an

answer on a 1 to 5 scale, with 1 meaning ”Not at all” and 5 points meaning ”Very

much”.

4.4.4 Results and Discussion

We analyzed each participant’s recorded logs to measure performance along sev-

eral metrics. The most relevant metrics for this study are the metrics for navigation

efficiency: 1) the number of times the participant initiated teleportation, 2) the accu-

mulated teleportation distance, and 3) the time required to complete a task. These

metrics were not revealed to the participants.

These metrics are evaluated for their effect sizes using Cohen’s d [67], where

qualifiers ”small”, ”medium”, and ”large” are applied to cases where d > 0.2, d > 0.5,

and d > 0.8, respectively. The qualifiers are extended to include ”very small”, ”very

large”, and ”huge” for d < 0.01, d > 1.2, and d > 2.0, respectively [68]. Statistical

significance is evaluated using the two-sample t-test. We report the p-value to identify

measurements that were due to chance.
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Table 4.1.: Average number of teleportations per participant.

task control experiment diff. p d effect size
Search 1 83.4± 48.9 21.6± 18.5 61.8 < 0.01 1.7 very large
Match 51.8± 24.8 27.6± 22.7 24.1 0.03 1.0 large

Search 2 98.3± 71.5 50.3± 31.5 48.0 0.06 0.9 medium

Finally, we report the aggregate results of the questionnaire responses for discus-

sion of subjective metrics which cannot be extracted from the task logs.

Number of Teleportations

Each teleportation incurs a discontinuity in the user’s mental localization in the

virtual world, after which the user must re-orient themselves. Therefore, it is desirable

to minimize the number of teleportations. Furthermore, the ill-effects of teleportation

can be reduced by improving visualization during teleportation.

We expect our anchored MPV to reduce the number of teleportations for two

reasons. First, our MPV disoccludes ROIs and allows the user to plan their path

more efficiently. Therefore, the user is able to avoid teleportating to destination

only to find that it is not of interest. The second reason is that our anchored MPV

extends the set of possible teleportation destinations to those areas newly disoccluded

by the visualization. As the user is not limited to teleporting only to destinations

with a line of sight, they are able to traverse at once a path that might require

multiple teleportations using conventional visualization. Table 4.1 shows the result

for the metric of number of teleportations. In Search 1 and Match tasks, which are

both performed in the single-floor Scene 1, our anchored MPV significantly reduced

the number of teleportations required to complete the tasks, with the p-value well

below 0.05. The effect sizes are very large and large for tasks Search 1 and Match

respectively. In the Search 2 task, which is performed in the more complex 3-story

Scene 2, the results are positive with a medium effect, although with a higher p-value

of 0.06.
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Table 4.2.: Average distance traveled per participant, in meters.

task control experiment diff. p d effect size
Search 1 464± 135 222± 90 242 < 0.01 2.1 huge
Match 326± 103 228± 86 99 0.03 1.0 large

Search 2 677± 306 527± 236 150 0.1 0.5 medium

Table 4.3.: Task completion time, in seconds.

task control experiment diff. p d effect size
Search 1 113± 45 56± 29 57 < 0.01 1.5 very large
Match 89± 25 78± 25 11 0.2 0.4 small

Search 2 157± 71 175± 88 (18) 0.7 0.2 small

Accumulated Teleportation Distance

We analyze the accumulated teleportation distance because the majority of loco-

motion that is conducted in our VR scenes is through teleportation, therefore it is

representative of the total amount of virtual viewpoint travel. We expect users of our

anchored MPV to accumulate less traveled distance. This is due to the increased path

planning efficiency as discussed in 4.4.4. Table 4.2 lists the average per participant

distance traveled for each task. Significant improvements of huge and large Cohen

d’s effect sizes were observed for both Search 1 and Match tasks performed in Scene

1. This is in line with our expectation that the user is able to explore maps effec-

tively with less required virtual locomotion. The result for task Search 2 performed

in the more complex Scene 2 also shows an improvement of medium effect size. The

statistical significance at p = 0.1 is not as strong as with tasks performed in Scene

1. However, the positive effect size suggests a more significant result is possible with

more user study participants.

Task Completion Time

Table 4.3 reports the time our participants took to complete the three tasks. The

experiment group had a statistically significant advantage for the first task. For the
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second task, the experiment group was faster, but the advantage was not statistically

significant. For the third task, the average completion time for the experiment group

was longer than for the control group. From our observation of the participants during

the experiment, we explain this based on a longer time the participant needed to

engage the MPV interface. As shown in Table 4.1, the number of jumps is significantly

lower for the experiment group even for the third task, indicating that the MPV is

effective, except that using it takes longer. A direction of immediate future work is

to improve the time effectiveness in which the vertical disocclusion MPV is used, by

suggesting to the user the availability of the effect in more salient way during training

(the blue highlight is sometimes easy to miss), and then by suggesting the tiptoeing

mechanism that actually implements the MPV.

Questionnaire Responses

The final metric we used to compare the two participant groups was a compila-

tion of the self-evaluation questionnaire responses (Table 4.4). The experiment group

self-reported higher spatial awareness and higher navigation efficiency, while they re-

ported a lower sense of actual presence in the virtual environment. It comes as no

surprise that the experiment group had better spatial awareness than the control

group as the MPV essentially provides a preview of the scene, without as much dis-

orienting backtracking as required by the sequential exploration with a conventional

visualization. Furthermore, our MPV was designed to anchor the user at all times,

so the additional information presented did not come at the cost of confusing the

user. Similarly, the improvement of navigation efficiency is a reasonable hypothesis

based on the same arguments. We explain the decreased sense of presence by the fact

that, like any MPV, our method upgrades the user from an uninterrupted immersive

first-person view of the scene to an occasional second or even third-person monitoring

of the scene. The user shifts fluidly viewpoint and their association with a specific
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Table 4.4.: Overall subjective evaluation.

control experiment diff. d effect size
Spatial awareness 3.3± 1.3 4.3± 1.0 1.0 0.7 medium

Efficiency 4.1± 1.5 4.6± 0.5 0.5 0.4 small
Presence 4.0± 1.1 3.5± 1.1 (0.5) 0.4 small

location in the scene, and the consequent decrease in sense of presence is a reasonable

trade-off towards gaining navigation efficiency.

4.5 Conclusions and Future Work

We have presented a novel method for multiperspective visualization for Virtual

Reality that promises to improve navigation efficiency. Our method visualizes the

scene with images that show more than what is visible from a single viewpoint, by

integrating additional perspective continuously and non-redundantly. Another goal

of our MPV is to always anchor the user by showing part of the scene geometry con-

ventionally, from the user’s first-person view. Finally, MPV navigation should remain

as intuitive as possible, by allowing the user to control the additional perspectives

through the tracked HMD. We describe anchored MPV techniques for lateral disoc-

clusion, for vertical disocclusion, and for teleportation. The MPV benefits have been

confirmed in a user study.

Additional user studies should be conducted to explore in depth the subjective

effects of MPV navigation. Our post-performance questionnaire provided preliminary

insights to the users’ perceptions, but the study is not tailored to measure subjective

effects such as visual quality, cognitive effort, and user comfort. Especially, tasks

which require prolonged usage of MPV navigation should be designed to examine

any cumulative effect of simulator sickness, even though no test participant expressed

discomfort at any point during the study. At the same time, these longer tasks allow

examination of any training effects as participants become familiar with the user

interface.
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One direction of future work is to find automatically the places in the scene where

disocclusion effects are useful. This is in view of the limitation that the virtual

portals needed to be manually marked in Scene 1 of our user study. One option is to

preprocess the scene, and another option is to decide on the potential for disocclusion

on the fly, based on the current frame.

Another direction of future work is to investigate the anchored MPV benefits in

the context of dynamic, and even evading targets, which place even more stringent

requirements on the quality of the disocclusion effect and on the intuitiveness of the

interface for deploying it. These requirements are particularly relevant to gaming

applications, where targets could follow complex strategies, or they could be other

humans. Furthermore, there is interplay between leveraging visualization to facilitate

navigation, and designing visualization for game mechanics. It is worth studying how

to optimize for both sets of goals in the design space for VR visualization. As VR

interfaces strive to become mainstream and to move beyond entertainment and into

day to day use, a scenario that requires special attention is the sit at desk scenario,

for which multiperspective visualization might be particularly well suited.

c© 2018 Springer Nature. Reprinted, with permission, from Meng-Lin Wu and Voicu Popescu,
Anchored Multiperspective Visualization for Efficient VR Navigation, Springer eBook, Jan. 2018.
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5. RGBD TEMPORAL RESAMPLING FOR REAL-TIME

OCCLUSION REMOVAL

Video streams are a widespread approach for visualizing real-world scenes in real

time. However, video streams suffer from occlusion. In a dynamic scene, an object

of interest, or target, can become temporarily hidden by other objects. In order to

achieve an uninterrupted visualization of the target, one approach is to acquire the

scene with multiple video streams, in the hope that the target is visible in at least

one stream at any given time. Such a visualization with multiple streams implies a

significant cognitive load for the user, who cannot monitor all streams in parallel, but

has to examine the streams one at the time. Moreover, there is no guarantee that the

target is visible in any one of the available streams.

Another approach is to rely on earlier frames to fill in the parts of the target that

are occluded in the current frame. This inpainting approach for removing occlusions

from video has the advantage of good visualization continuity, since the viewpoint

does not change, and of simple acquisition, requiring only one video stream. Whereas

there are real time video inpainting methods for removing occlusions of a static or

of a rigid body target, prior art methods for deformable targets are too slow for real

time performance.

In this chapter we describe a novel method for video inpainting to remove occlu-

sions of a deformable target in real time. Our method takes advantage of the fact

that, in many cases of interest, such as when the target is a walking human, the

target deformation is coherent, and the range of deformations is small. Our pipeline

segments the partially occluded target from the current frame and inpaints the miss-

ing pixels by resampling from a matching disoccluded target from an earlier frame.

Our pipeline takes as input a single video stream enhanced with a depth channel, i.e.

an RGBD stream, acquired by a stationary computer tablet with a structured light
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(a) Video sequence A

(b) Video sequence B

Fig. 5.1.: Pairs of frames that illustrate our occlusion removal method: the original
frame is shown to the left, and the frame output by our method is shown to the

right. Our method runs at an interactive frame rate of 30 frames per second.
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Fig. 5.2.: Video sequence C — Comparison to ground truth: original frame (left),
synthetic occluder added to original frame (middle), and frame without occlusion

generated by our method (right).

depth camera accessory. The depth channel enables faster and more robust target

segmentation and matching.

We demonstrate our method in the case of a walking human who is occluded by

other stationary or walking humans (Fig. 5.1). Fig. 5.2 compares our output to truth

using a synthetic occluder. Our method does not rely on a known deformable model

of the targets and occluders, and therefore it supports general target and occluder

shapes. For example, in Fig. 5.1 lower, the target is a human pulling a wheeled bag.

Our pipeline runs at interactive rates. We also refer the reader to the accompanying

video that illustrates our method.

5.1 Prior Work

The removal of image defects, and the subsequent completion of the image by

inpainting, is a well-known problem since the invention of photography [80,81]. Image

defects such as scratches, dusts, text and scene clutter are cut out, and the remaining

hole regions are inpainted using information taken from regions outside the hole, called
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source regions [82]. Two fundamental approaches are low-level texture synthesis and

and higher-level structure propagation.

Texture synthesis is concerned with computing a larger texture that is similar to a

smaller initial sample texture. When large image defects such as unwanted objects are

cut out, inpainting the large holes requires more than filling in with hole boundary

colors. In these cases, a plausible background texture can be synthesized that is

similar to surrounding source region texture, while maintaining continuity across the

hole region boundaries [83,84]. The plausibility of the inpainted image depends on the

background being self-similar. Performance is improved by patch-based inpainting,

which uses source region patches instead of pixels [85,86].

However, if cutting out the foreground reveals a background with salient geometry

or non-repeating patterns, then the background structure must be extended into the

hole region. The structure propagation approach extrapolates source region edges

such as isophotes [87] or follows user provided guidance [85, 88] in order to inpaint

plausibly. The structure propagation method is suited to inpainting cartoon-like im-

age holes. Multi-level approaches that combine both texture synthesis and structure

propagation are an active research area [89–91].

A video is a linear sequence of images. To remove an object from a video segment,

the object has to be cut out from multiple frames where it is visible, leaving behind a

spatio-temporal volume defining the hole region to be inpainted. Video inpainting is

more challenging than image inpainting because a) a large number of images have to

be inpainted; b) the source region where to search for the missing colors is larger due

to the addition of the time dimension; c) the inpainted holes must maintain temporal

continuity across frames, in addition to maintaining spatial continuity across hole

boundaries [92–94].

Efficient video inpainting is possible, even in the case of dynamic camera poses,

by propagating the mapping of inpainting pixels forward through successive video

frames [95,96]. However, the background in the hole region has to be static and with

simple geometry, such as a few planes. In the case of static foreground and background
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with significant depth separation, dynamic camera poses are leveraged to expose every

part of the background through parallax. The static background can then be fully

reconstructed and inpainted in every video frame [97]. Scene-space video inpainting

removes the constraint on background simplicity by reconstructing complex scene

geometry from depth images [98]. Although capable of filling in hole regions with

complex background, the inpainting background scene points still need to be visible

at other points in time at the same scene-space position, so the static background

restriction is not removed. Thus, both of these approaches are ill-suited for occlusion

removal when the occluded background is typically dynamic and deformable.

For the more general problem of inpainting dynamic and deformable targets, such

as walking humans, it is necessary to find the best source region, and to map the

current hole region to the source region, for every video frame. The global optimiza-

tion approach takes the entire spatio-temporal volume of the video sequence as search

space for source regions [86, 92, 99, 100]. By optimizing a visual quality energy func-

tion, the best mapping between the hole and source regions is obtained for inpainting

the missing pixels. Although high visual quality is achieved, the performance is in-

sufficient for interactive applications due to the large search space for source regions

and the high cost to evaluate the energy function.

Object based methods improve performance by reducing the search space for

source regions [101–104]. The target is segmented and tracked in the video. As oc-

clusions occur, the hole region is inpainted with samples found in the target segment

in video frames where the target is visible. Compared with the global optimization

approach, the performance is improved when the target is small. However, to the best

of our knowledge, video inpainting of deformable targets at interactive rates without

user input has not yet been achieved.
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Fig. 5.3.: System Overview

5.2 System Overview

Our system pipeline is shown in Fig. 5.3. The system takes as input a single RGBD

video stream acquired from a fixed viewpoint showing a moving and deforming target

that becomes occluded. The system outputs a video stream in which the target is

disoccluded. The system processes each frame with a pipeline that has three main

stages: segmentation, which identifies the occluded parts of the target, inpainting,

which fills in the occluded parts of the target, and visualization, which shows the

frame with the target unoccluded.
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Fig. 5.4.: Illustration of incomplete (left) and inpainted (right) billboard for the case
shown in Fig. 5.1. The parts of the target visible in the current frame are highlighted
in green, the parts of the billboard that are neither occluded nor part of the target
are shown in blue, the parts of the billboard that are occluded are highlighted in
red, and the parts of the billboard that are inpainted are highlighted in yellow.

The frame is segmented both in 3D, by unprojecting pixels to a point cloud using

the depth channel, and in 2D, using the color and depth channels. The output of the

segmentation stage is an “incomplete billboard”, which is a rectangular impostor in

3D that is texture mapped with the parts of the target visible in the current frame.

The billboard texture has both color and depth channels. The incomplete billboard

for the left pair in Fig. 5.1 is shown in Fig. 5.4. The segmentation stage is described

in Section 5.3.

The incomplete billboard is inpainted using color and depth data from an earlier

frame that shows the target in a similar pose. A matching earlier impostor billboard

is found among the previously inpainted billboards, the current billboard is mapped

to the earlier billboard using feature correspondences, and the occluded parts of the
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current billboard are filled in by resampling from the earlier billboard. The inpainting

stage is described in Section 5.4.

The inpainted impostor billboard is used for an unoccluded visualization of the

target. The occluder can be shown semi-transparently (Fig. 5.1, upper), or it can be

cut away (Fig. 5.1, lower). The visualization stage is described in Section 5.5.

5.3 Segmentation

The first step of occlusion removal is to identify the parts of the target that are

occluded, which is done by segmenting the current frame (Alg. 1).

The algorithm for segmenting the current frame Fi takes as input a reference frame

F0 captured from the same view V0 before the moving objects appear, and cylinders

Ci−1 bounding the moving objects that were computed at the previous frame. The

algorithm proceeds in three major steps: 2D segmentation, 3D segmentation, and

billboard construction. The 2D segmentation step (lines 3-5) partitions Fi into fore-

ground and background by detecting changes in the depth channel with respect to F0

(Fig. 5.5, top row).

The 3D segmentation step (lines 6-21) first computes a top view image Itop of the

scene by unprojecting the foreground pixels to 3D points using the depth channel

(line 9), and by splatting the 3D points into Itop using a camera with a downward

view direction (line 10), see bottom left image in Fig. 5.5. Then, if Fi is the frame

where the target first appears, the Itop is segmented into blobs using OpenCV’s Simple

Blob Detector algorithm [105], (line 12), and a vertical bounding cylinder is fitted to

each blob (line 14). If the target was visible before (line 15), the blobs are tracked

from frame to frame, instead of detected by searching blindly the entire top view

image Itop. Each tracked blob BLij is found in Itop in the region where its bounding

cylinder was found at the previous frame (line 17). If BLij is not present in Itop (line

18), the corresponding object is totally occluded and the its bounding cylinder Cij

is updated by extrapolating its position from the previous frames (line 21). We use
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Algorithm 1 Segmentation

1: Input: current RGBD frame Fi, reference RGBD frame F0, bounding cylinders
Ci−1 of moving objects in previous frame, camera view V0.

2: Output: billboards BBi of current frame, bounding cylinders Ci of moving ob-
jects in current frame.

3: // Step 1: 2D segmentation
4: for each pixel (u, v) in Fi do
5: FG(u, v) = Fi(u, v).z < F0(u, v).z
6: // Step 2: 3D segmentation
7: for each pixel (u, v) in FG do
8: if FG(u, v) then
9: p = Unproject(u, v, Fi(u, v).z, V0)

10: Splat(p, Itop)
11: if target appears for the first time then
12: BL = DetectBlobs(Itop)
13: for all blobs BLj in BL do
14: Cij = ComputeBoundingCylinder(BLj)
15: else
16: for all cylinders Ci−1,j in Ci−1 do
17: BLj = ComputeBlob(Itop, Ci−1,j)
18: if Size(BLj) > εB then
19: Cij = ComputeBoundingCylinder(BLj)
20: else
21: Cij = ExtrapolatePosition(Ci−1,j)
22: // Step 3: Billboard construction
23: for all cylinders Cij in Ci do
24: BBj.rectangle = VerticalCrossSection(Cij)
25: BBj.texture = Project(Fi, V0, BBj.rectangle)
26: for each pixel (u, v) on BBj.texture do
27: if Fi(u, v) == F0(u, v) and !FG(u, v) then
28: BBj.texture(u, v).label = background
29: else
30: p = Unproject(u, v, F i(u, v).z, V0)
31: if p is inside Cij then
32: BBj.texture(u, v).label = visible
33: else if p is behind Cij then
34: BBj.texture(u, v).label = background
35: else if p is in front of Cij then
36: BBj.texture(u, v).label = occluded
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Fig. 5.5.: Illustration of the steps of the segmentation stage. Top: depth channel of
reference frame F0 (left) and of current frame Fi (middle), and output of 2D

segmentation (right). Bottom: top view image of foreground objects used for 3D
segmentation (left), and visualization from a translated viewpoint of bounding

cylinders (middle) and of billboards (right).
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a threshold εB below which the object is considered totally occluded. Furthermore,

when the size of BLJ approaches the εB, the bounding cylinder is set by interpolating

between the computed (line 19) and the extrapolated (line 21) cylinder (omitted for

conciseness). The bounding cylinders are illustrated from a translated viewpoint in

the middle image on the bottom row in Fig. 5.5.

The third step constructs an impostor billboard for each moving object based on

its bounding cylinder. A billboard is a vertical rectangle defined by the cross section

of the cylinder facing the camera (line 24), texture mapped with an RGBD image.

The texture is computed by projectively texture mapping the current frame onto the

rectangle (line 25), and then by labeling every texel as a visible part of the object

(line 32, green in Fig. 5.4), as a visible part of the background (lines 28, 34, blue in

Fig. 5.4), or as an occluded part of the object (line 36, red in Fig. 5.4). To label a

texel, it is first compared to the reference frame F0 (line 27). If the texel is distinct

from the reference frame in the color channels or the depth value, then the labeling is

decided based on the 3D segmentation of each object given by the bounding cylinder

(lines 30-36).

5.4 Inpainting

In the inpainting stage, the occluded pixels of the target billboard are further

classified as background pixels, which are set to transparent, and as occluded tar-

get pixels, which are inpainted using samples from a previous target billboard, as

described in Alg. 2.

The algorithm takes as input the target billboard BBt computed by the segmen-

tation stage at the current frame i, the cache of previously inpainted target billboards

IBBC, and the index bi−1 of the frame where the matching billboard was found at

the previous frame. The algorithm outputs the inpainted target billboard IBBi and

the index bi where the matching billboard was found.
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Algorithm 2 Inpainting

1: Input: target billboard BBt of current frame i, cache of previous inpainted target
billboards IBBC, frame index bi−1 of matching billboard from previous frame.

2: Output: inpainted target billboard IBBi and frame index bi of matching bill-
board at current frame.

3: // Step 1: Selection of matching billboard
4: εmin =∞
5: for j = bbi−1 − w/2c to bbi−1 + w/2c do
6: ε = MatchingError(BBt, IBBj)
7: if ε < εmin then
8: εmin = ε
9: bi = j

10: // Step 2: Feature based billboard alignment
11: BBt.features = FeatureExtraction(BBt.texture)
12: FeatureMatching(BBt.features, IBBj.features)
13: Divide BBt into square grid G
14: for each feature f in BBt do
15: c = cell of G containing f
16: d = f − f.match
17: if ||d|| < ||c.d|| then
18: c.f = f
19: c.d = d
20: // Step 3: Filling in occlusion holes
21: for each missing pixel (u, v) in BBt do
22: d =

∑
c∈G

c.d K(r, σ)/
∑
c∈G

K(r, σ),

where r = ||(u, v)− (c.f.u, c.f.v)||
23: (uj, vj) = (u, v) + (d.u, d.v)
24: BBt(u, v) = IBBj.(uj, vj)
25: BBt(u, v).label = IBBj(uj, vj).label
26: // Step 4: Update cache of inpainted billboards
27: IBBi = BBt

28: IBBi.features = FeatureExtraction(IBBi.texture)
29: IBBC.Insert(IBBi)
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The inpainting algorithm proceeds in three major steps: selection of matching

billboard, feature based billboard alignment, and fill-in of occlusion holes.

To select the matching billboard (lines 3-9), the algorithm searches for the previous

billboard that is most similar to the current billboard. A window of w billboards are

considered, centered at the previously found best match. The width of the window

w is empirically set at 0.3 times the distance, in number of frames, from the current

billboard to the previously found best match. The index of the frame where the

best matching billboard was found is recorded to center the search at the next frame

(line 9). Given two billboards BBt and IBBj, the matching error is computed by

minimizing the depth alignment error between the billboards as IBBj is translated

left-right and forward-backward with respect to BBt. The depth alignment error for

a left-right translation ∆u and a forward-backward translation ∆z is defined as the

mean squared error between the depths zt and zj of the two billboards BBt and IBBj

over the N overlapping pixels, as shown in Eq. 5.1.

ε(∆u,∆z) =
∑
u,v

(zt(u, v)− zj(u+ ∆u, v) + ∆z)2/N (5.1)

Fig. 5.6 gives a heat map visualization of the matching error for the 140 frame

sequence used in Fig. 5.1, upper. A point (i, j) on the heat map corresponds to the

matching error between a frame i and an earlier frame j. The black lines show the

search window used by the algorithm, and the purple dots shows the best matches

found for each frame. The black lines show that the search starts in the global

minimum error valley. The plot shows that the period of motion is about 40 frames.

The purple dots form a relatively straight line because the period does not change

much, however, it is not constant. Our algorithm relies on the availability of a similar

billboard, but it does not require that the motion be periodic.

If the target billboard computed by segmentation does not contain any occluded

pixels, the inpainting algorithm stops. Step 1 has to be executed even for target
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Fig. 5.6.: The heat map visualization of the matching error. The x axis is the
current frame index i, and the y axis is the previous frame index j, j < i. The

search window is the region between the black lines, and the best matches found for
each frame are marked by purple dots. The entire heat map is shown here to cover
all possible pairs of (i, j), whereas only the (i, j) pairs inside the search window are

calculated in Step 1 of Alg. 2.
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billboards without occluded pixels in order to update the frame index bi where to

start the next matching billboard search.

Before actual inpainting can begin, a mapping between the current and previous

billboard has to be computed. The rigid alignment computed at Step 1 during the

selection of the matching billboard is not sufficient for quality inpainting. At Step

2, a non-rigid alignment is computed based on color features (lines 10-19). ORB

features [106] are extracted from the color texture of the billboard (line 11), and they

are matched to the previously extracted features of the cached billboard IBBj using

the Hamming distance (line 12). The mapping between BBt and IBBj is computed

efficiently with the help of a 2D grid G. The features of BBt are assigned to cells

in G (lines 14-19), which has a dimension of 20×40 cells, width×height. The grid

G controls feature density in cells with great texture variation by culling all but one

feature that are assigned to each cell. When multiple features are assigned to a cell,

only the feature that is closest to its matched feature is kept (line 16-19).

Fig. 5.7 shows the billboard inpainted with and without non-rigid alignment. The

left image shows extracted features in both the current and previous frames in colored

circles. The matched features which survive culling are highlighted in cyan, while

those that are discarded are colored red. The density of feature matches is effectively

controlled by the culling process around the face and lower leg regions. The middle

and right images show the inpainted billboards where the inpainted pixels are tinted

red. With non-rigid alignment applied (right), the pixels around the shoulder are

better aligned, while the pixels around the foot are unaffected and remain well aligned.

At Step 3, the grid with assigned features is used to compute the location from

where to get color to fill in occlusion holes. For each occluded pixel of the current

target billboard BBt, the location in the best matching billboard IBBj is given by a

displacement d. The displacement is computed by filtering the displacements stored

in the grid cells with a Gaussian kernel K centered at the current pixel (line 22). As

a result, the displacement d is interpolated from displacements of nearby matched

feature pairs, each weighted by the Gaussian kernel. The color and depth channels
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Fig. 5.7.: Left: extracted ORB features. Matched feature pairs are highlighted in
cyan. Middle: inpainted billboard without non-rigid alignment. Right: inpainted

billboard with non-rigid alignment.

as well as the transparency label of the pixel are set using the corresponding pixel in

the cached billboard (lines 23-25). If the corresponding pixel is transparent, i.e. it is

a background pixel, the current pixel is also marked as transparent.

With all the missing pixels filled in, Step 4 of the algorithm extracts the complete

set of color features from the inpainted target billboard. The billboard, along with

extracted features, is inserted into the cache of inpainted billboards for use in future

frames.

5.5 Visualization

Once the inpainting stage computes a complete impostor billboard of the target,

the target is visualized occlusion free using standard occlusion-removal visualization

techniques developed for synthetic scenes such as transparency and cutaway (Fig. 5.8).

All objects are rendered on top of the reference frame efficiently as billboards with

transparent texels. Correct visibility ordering of the billboards is readily available

since the billboards are placed at the correct depth in 3D, leveraging the depth chan-

nel, as described above.
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Fig. 5.8.: Video sequence D — Occlusion-free visualizations: transparency (left),
cutaway (middle) that completely removes the occluder, and cutaway with occluder

silhouette (right).
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5.6 Results and Discussion

We tested our system on several video sequences (Fig. 5.1, 5.2, 5.8, and 5.9)

captured in both indoor and outdoor settings, with walking humans as targets and

occluders. Some sequences have an eye-level viewpoint (e.g. sequences A and D) and

some simulate a raised viewpoint like the ones used in surveillance applications (e.g.

sequences B and E). In some sequences the target is a human rolling a wheeled bag or

pushing a trolley cart, which illustrates that our method does not rely on a walking

human model (e.g. sequences B, F, and H). In sequences C, F, G, and H the occluder

is synthetic which provides ground truth for the occlusion free frames to which to

compare the output of our method (Fig. 5.2).

The acquisition setup consists of a computer tablet (Apple iPad) with an on-board

structured light depth camera accessory (Structure Sensor [107]). For our application,

the tablet is set to acquire video at a resolution of 640 × 480 at 30Hz. The depth

camera acquires depth at a resolution of 320 × 240 at 30Hz. The depth camera

acquires depth frames in sync with the video frames. The tablet is mounted on a

tripod to record RGBD videos from a fixed viewpoint.

5.6.1 Speed

We measured the performance of our pipeline by processing pre-recorded RGBD

video sequences on an Intel Xeon E5-1660 3.3GHz workstation with 16GB of memory

and with an NVIDIA Quadro K5000 4GB graphics card. The implementation mainly

relies on the CPU, but uses OpenGL and GPU shaders written in GLSL for 2D

segmentation and final composition. In all our tests, the frame rate is at least 27fps,

with an average frame rate of 31.0fps (Table 5.1), or a frame time of around 32.2ms.

Out of the three main stages of our pipeline, segmentation and billboard construction

(Alg. 1) takes 6ms, and inpainting the target billboard (Alg. 2) takes 21ms. The

visualization stage takes up the remaining frame time, i.e. 5ms.
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(a) Video sequence E (b) Video sequence F

(c) Video sequence G (d) Video sequence H

Fig. 5.9.: Video sequences E to H — Occlusion-free frames generated with our
method.

Table 5.1.: Frame rates achieved by our method [fps].

Video sequence

A B C D E F G H

min 27 28 29 29 28 28 30 29
max 35 38 33 38 37 34 35 37
average 30 31 31 32 31 30 30 33
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Within the inpainting stage (Alg. 2), which only processes the target billboard

and not the occluder billboards, steps 2 and 4 together take the most time at 13ms,

or 40% of the total frame time. The cost arises from the FeatureExtraction function

(Alg. 2, lines 11 and 28) which extracts ORB features for the purpose of non-rigid

alignment between textures of current and previous target billboards. Performing

feature extraction on downsampled billboard textures increases performance at the

cost of alignment precision.

We achieve high performance by inpainting from a known region of a carefully

selected previous frame. Compared to offline video inpainting methods, which may

take image pixels or patches from disjoint regions across multiple frames, our method

greatly reduces the search space for inpainting samples. Since our methods respects

the inpainting source topology, the cost of the global optimization for the alignment

of inpainting samples is also eliminated. Section 5.6.3 discusses the performance

comparison in detail.

5.6.2 Quality

As shown in the images in this chapter (Fig. 5.1, 5.2, 5.8, and 5.9) and in the

accompanying video, our method produces quality occlusion-free visualizations of the

target. Our method does not minimize per pixel error and rather focuses on providing

a high-quality (blur free) visualization of the target in a similar pose to the one needed

for the current frame. When the target is partially occluded, the inpainting conforms

to the parts of the target that are visible. Our system supports a brief total occlusion

of the target (Fig. 5.2), case in which the matching billboard is found by assuming a

constant time offset to the frame used for inpainting (Alg. 2). Our method has good

frame to frame coherence, providing a continuous, occlusion-free visualization of the

target.
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5.6.3 Comparison to prior work

We compare the result of our fast occlusion removal with a state-of-the-art patch-

based video inpainting algorithm [100] (Fig. 5.10). To focus the comparison on the

deformable and moving target object, we choose one of our video sequences with

relatively simple background geometry. A dynamic artificial occluder, which occludes

the target only partially, is added to the video sequence, while the original video,

without the occluder, serves as ground truth reference. The prior work algorithm

takes an additional binary occluder mask video as input.

The prior work method is able to inpaint the occluded parts of the target while

maintaining edge continuity. It is also capable of inpainting both the flat and textured

parts of the background. However, their method does not produce visually correct

results for the target, as evident in the highly deformed legs. On the other hand, our

method is able to inpaint the missing parts of the target by borrowing from an earlier

frame when the missing parts were visible.

To compare the performance of the two methods algorithmically, we identify the

two major operations common to our and prior work algorithms: search and recon-

struction. The search operation in both algorithms searches within the video volume

for best matching source pixels for inpainting the hole pixels. The reconstruction

operation then inpaints the hole by adapting source pixels to the hole region. For the

purpose of algorithmic comparison, we denote the number of hole pixels H.

The search operation in our algorithm is efficient because the matching error

is only computed in whole between the current billboard and the cached billboard

(Alg. 2, Step 1). Furthermore, the matching error is computed only within the search

window, w. The complexity is therefore O(Hw). In comparison, the search operation

in the prior work algorithm searches for a best matching patch to each hole patch,

optimized over many iterations. The overall complexity is O(klHnNp), where kl is

the number of iterations for optimization, n is the number of source patch candidates,

and Np is the patch size.
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(a) Input (b) Truth

(c) Our result (d) Newson et al. 2014 [100]

Fig. 5.10.: Comparison between our method and prior work.
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Table 5.2.: Performance comparison

Algorithm Search Reconstruction

Ours (predicted) O(Hw) O(keH + kmf
2) + TGPU

Ours (measured) 1.7ms 13ms + 6.6ms
Newson (predicted) O(klHnNp) O(klHN 2

p )
Newson (measured) 20s 3.1s

The reconstruction operation in our algorithm aligns matched pairs of features

extracted from the current and source billboards (Alg. 2, Step 2 and 4). These sparse

features are paired by brute force comparison. Overall, these steps incur a complexity

of O(keH+kmf
2), where ke and km are constants for feature extraction and matching.

Step 3 executes in parallel on the GPU, and the cost is denoted by TGPU . In the prior

work algorithm, each hole pixel receives color from Np source pixels, where each

source pixel’s weight is calculated by a patch-to-patch distance of O(Np) complexity.

The overall complexity is therefore O(klHN 2
p ), where kl is the number of iterations

for optimization.

We estimate the constant factors for the complexity of the prior work algorithm

with default parameters. Overall, the optimization iteration count k is on the or-

der of 102. Furthermore, any pixel-to-pixel complexity is increased to patch-to-patch

complexity, where a spatio-temporal patch defaults to a cube of 53 pixels. The opti-

mization loop and patch size greatly scale up the run time of the prior work algorithm

by a factor of 104.

We also compare the actual running times of the two methods. The prior work

implementation is obtained from the authors, and it is executed with default param-

eters. The prior work implementation takes 3,053s to inpaint the 90 frame video

segment for an average of 33.9s per frame. Our method takes an average of 32ms per

frame for the same video segment, which is a significant performance improvement at

3 orders of magnitude. The prior work algorithm is implemented on the CPU, while

certain steps of our pipeline (Alg.1, Step 1 and 3; Alg. 2, Step 3) run on the GPU. A

detailed breakdown is provided in Table 5.2.
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In order to objectively assess the reconstruction quality, we employ algorithmic

metrics to compare the similarity between reconstructed images and truth images.

We choose a learning-based metric which calculates the weighted cosine distance

between feature vectors extracted from a convolutional encoder [108]. Different from

conventional pixel error metrics such as PSNR, learning-based metrics are able to infer

high level image structure, which better evaluates inpainting of large regions of missing

pixels. The implementation from the authors were used with default parameters for

the AlexNet network [109]. Overall, our reconstructed images achieved an average

distance of 0.010± 0.007 from truth images, significantly less than the prior method

which achieved an average distance of 0.021± 0.007. Therefore, our method is shown

to reconstruct images in the test sequence more similar to the ground truth than the

prior method.

5.6.4 Limitations

Limitation in segmentation accuracy leads to artifacts in the impostor billboard

textures in several ways: i) The 3D segmentation (Alg. 1, Step 2) can only segment

objects separable by bounding cylinders. If the objects are intersecting each other,

they cannot be separated cleanly. ii) Background subtraction relies on comparing

the current pixel color to the known background color. However, dynamic objects

cause lighting changes in the background. iii) The depth channel suffers from noisy

or missing depth value, so pixels can be erroneously segmented. Our pipeline can

easily leverage any advance in segmentation.

Our method assumes motion coherence over the occlusion time interval, so it does

not support abrupt deviations from the motion pattern, such as, for example, the

target stopping behind the occluder to look at their watch. Another limitation is

the difficulty in predicting target motion when the target is heavily occluded for an

extended amount of time. Our method does not rely on a constant motion period and

it adapts the time offset to the past frame used for inpainting. However, when the
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target is occluded for a long time, this prediction of the position of the target becomes

approximate. The difference between the predicted and actual target position can

increase until the target reemerges, when the visualization snaps the target back to

the correct position and pose.

Our method assumes that the target has the same appearance in the current frame

as in the the inpainting source frame. This assumption is violated by a series of view-

dependent effects, including parallax between the two frames as the position of the

viewpoint relative to the target changes, and shadows and reflections of the target.

It is also violated by non-uniform scene lighting which alters the target’s appearance

between the two frames.

5.7 Conclusions and Future Work

We have implemented a system which removes occlusion to targets in RGBD

video streams by target impostor inpainting. Our system operates at interactive

rates by leveraging the depth information in several ways: depth keying augments

color-based background subtraction; 3D point clouds constructed from depth images

support fast object detection and tracking; billboards enhanced with per-texel depth

enable efficient billboard to billboard correspondence computation. The system is

demonstrated on a variety of real-world scenarios including one or more occluding

objects, different camera perspectives, and different object geometries. Performance

is greatly improved compared with prior work.

Our current work uses a single RGBD video stream and it shows the disoccluded

video from the same reference viewpoint. Future work can explore the use of multiple

input RGBD streams: multiple RGBD streams can acquire the target from different

viewpoints over longer periods, constructing a comprehensive cache of the target’s

actions, which potentially increases the range of occlusions that our method can suc-

cessfully inpaint. To leverage this comprehensive cache requires efficient cache index-

ing and searching. Inspired by the work of Liu et al. [110], we would like to investigate
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efficient search algorithms of best matching frame in the presence of large billboard

caches accumulated from multiple video streams. A related possible improvement is

to remove the requirement that the tablet be stationary during acquisition, where

different approaches to video segmentation are called for.

Our method relies on a cache of previous target billboards, at least one of which

needs to be similar to the current, partially occluded billboard. This is challenging

for targets that exhibit a wide range of motions. For human targets, we demonstrated

our method on various cases of walking motion while interacting with rigid objects.

Our method does not require strict periodicity, and can handle acceleration and de-

celeration. This is an important case, as humans, animals, and birds move fairly

uniformly, but with slight variations, over short distances. Objects that move rigidly

like cars are much simpler cases.

Recent advances have been made in applying the CNN to image and video in-

painting problems [111, 112]. These methods are able to inpaint complex images

when the CNNs are trained with a dataset that is representative of the expected

input. However, image inpainting using CNN does not straightforwardly preserve

temporal coherence when applied to video processing [111], and fast video inpainting

using CNN remains challenging due to the computationally costly 3D convolution over

the input video volume [112]. We would like to explore potential hybrid approaches

that leverage both the efficient billboard caching of our method and the generalized

image reconstruction using CNNs.
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6. CONCLUSION

This thesis makes the following statement: Occlusions in desktop and head-mounted

display visualization of 3D datasets can be alleviated by relaxing the single viewpoint

and single timepoint constraints of conventional images, to increase the information

content of the image by integrating dataset samples collected from multiple viewpoints

and multiple timepoints.

In support of our thesis, (1) we presented a multiperspective rendering model that

relaxes the single viewpoint constraint, (2) we presented the use of multiperspective

rendering in the context of HMD visualization for AR and VR applications, (3) we

presented a naturalistic interface for HMD MPV, and (4) we presented an approach

for multi-timepoint visualization of real world scenes.

(1) We presented the flexible focus+context camera model that relaxes the single

viewpoint constraint. This flexible camera model subdivides the conventional camera

frustum into camera segments, each defined as a CGLC. CGLCs in a focus region are

assembled into a sub-frustum to image the scene ROI without any distortion. There

can be multiple such sub-frusta in a flexible camera model, and each sub-frustum

is free to image the region of interest from a novel viewpoint that is disjoint from

the main viewpoint. CGLCs in the context regions connect the sub-frusta to provide

continuous context visualization. The flexible camera framework is constructed to

alleviate occlusions for 3 scenarios: i) top-down exploration, where the user explores

the scene using the multiple sub-frusta in parallel, ii) bottom-up integration, where

the user is presented with a comprehensive image of multiple known ROIs, and iii)

target tracking, where the flexible camera automatically maintains an uninterrupted

visualization of the target.

(2) We presented the MPV as an approach to increase navigation efficiency for

users of immersive displays in VR and AR. In a first implementation in VR, the user
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deploys a secondary perspective that disoccludes the gazed point at ground level,

obviating the need for the user to assume different viewpoints in the scene using

laborious physical locomotion. In a second implementation in AR, the secondary

perspective is deployed for the view portal selected by user gaze, and it seamlessly

integrates scene geometry beyond the view portal into the user’s primary perspective.

By relaxing the single viewpoint constraint in immersive displays, the user is able to

selectively disocclude multiple ROIs in VR and AR with minimal physical locomotion.

The user study showed significant improvement in navigation efficiency on tasks such

as tracking, matching, searching, and ambushing objects of interest.

(3) We presented the Anchored MPV in VR that extends the user’s control of

the visualization and integrates with teleportation navigation. In this implementa-

tion, the visualization integrates an anchoring primary perspective and a controllable

secondary perspective. The primary perspective, visualizing the near geometry, is

undisturbed and serves to anchor the user in the virtual scene, while the secondary

perspective is intuitively oriented by the user’s lateral head translation. Furthermore,

this implementation supports anchored teleportation, leveraging MPV to provide a

continuous visualization of the scene during teleportation. In the user study where the

users relied on teleportation for long distance navigation, significant improvements

were observed in the number of teleportations and the total distance traveled.

(4) We presented the temporal resampling algorithm that removes occlusion suf-

fered in acquisition using a physical camera by integrating samples from multiple

timepoints. We implemented the algorithm in a system that takes an input RGBD

video stream, and outputs video visualizations where occlusion to the target of in-

terest is removed. The system first segments the input video stream into foreground

objects and the background geometry, leveraging the depth information from the

video stream. A textured billboard impostor is created for each foreground object.

The billboard impostor for the target is stored in a cache. If the target becomes

occluded at one point in time, the occluded region of the target’s billboard impostor

is inpainted by first selecting a best matching previous billboard from the cache, and
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then seamlessly merging the cached samples from the past timepoint with the visible

samples from the current timepoint. By carefully selecting matching target impos-

tor billboards, and by resampling from only the specific timepoints, our algorithm

greatly reduces the complexity of video inpainting. Due to the novel algorithm, our

system achieves interactive frame rates, which enables potential applications of video

inpainting in surveillance and diminished reality.

Occlusion arises in complex dataset acquisition or visualization that follow the

physical PPC model. By rethinking imaging in graphics and visualization, novel

camera models have been designed to alleviate occlusion through careful deviation

from the PPC model. In this thesis, we have explored such novel camera models

which relax the single viewpoint and single timepoint constraints, and therefore syn-

thesize images that show not only what is visible from the current viewpoint and

timepoint, but also what is visible across multiple view and timepoints. The image

generalization achieved through this increased freedom in camera model design has

been found to increase visual information bandwidth, to improve navigation efficiency

in HMDs, and to efficiently infer missing samples in the dataset. Based on the positive

results presented, we advocate a departure from conventional rendering algorithms

that mimic physical camera models, to explore the expanded design space of camera

models to derive eloquent mappings of 3D datasets to 2D images.
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